题目描述
这次也是很长的题面啊(qwq)
题目大意如下:
给定一棵(N)个节点的树以及(M)次询问,每次询问给出(x, y, z)三个节点,程序需要在树上找一个点(p)
使得(c = dist(x,p)+dist(y,p)+dist(z,p))取最小值,每一次询问输出满足条件的(p)和此时的最小的(c)
基本思路
看到树上距离的题,很容易想到(LCA),但是此处有三个点,不能直接用(LCA),所以我们得绕一点弯...
考虑求出三个点两两之间的$LCA, $那么我们可以马上想到:
[p in { LCA(x,y),LCA(x,z),LCA(y,z)}
]
证明:
对于一条树上路径((x, y)),显然对于
[forall p in (x,y), dist(x,p)+dist(p,y)=dist(x,y)
]
所以该$ p (点并不会影响)x,y(的费用,所以我们应该尽可能使) p (点靠近) z $点
此时需要分类讨论 :
- (z in (x,y) ,)那么(p=z)
- (z
otin (x,y),)那么
- (z in SubTree(x)()或 (z in SubTre(y)),p=x()或(p=y))
- (z otin SubTree(x))且(z otin SubTree(y), z=LCA(x,y))
是不是感觉好麻烦?其实我们完全没必要做这么多。(qwq)
因为(x,y,z)是有轮换性的,所以只需要用某两个点之间的(LCA)试着更新(p)点就好了,结论也就是这么出来的
(具体过程可以根据上面的分类讨论,自己yy一下,最好画一张图我才不会告诉你我不会用几何画板)
细节注意事项
计算树上路径时,一定不要直接用(dep)去减,跑得过样例但是会WA
参考代码
#include <cstdio>
#include <cstring>
#define rg register
const int MAXN = 500010;
inline int abs(int a) { return a < 0 ? -a : a; }
inline void swap(int& a, int& b) { int t = a; a = b; b = t; }
inline int read() {
int s = 0; bool f = false; char c = getchar();
while (c < '0' || c > '9') f |= (c == '-'), c = getchar();
while (c >= '0' && c <= '9') s = (s << 3) + (s << 1) + (c ^ 48), c = getchar();
return f ? -s : s;
}
int tot, head[MAXN], nxt[MAXN << 1], ver[MAXN << 1];
inline void Add_edge(int u, int v) { nxt[++tot] = head[u], head[u] = tot, ver[tot] = v; }
int dep[MAXN], f[MAXN][22];
inline void dfs(int u, int fa) {
dep[u] = dep[fa] + 1, f[u][0] = fa;
for (rg int i = 1; i <= 20; i++)
f[u][i] = f[f[u][i - 1]][i - 1];
for (rg int v, i = head[u]; i; i = nxt[i])
if(!dep[v = ver[i]]) dfs(v, u);
}
inline int LCA(int x, int y) {
if (dep[x] < dep[y]) swap(x, y);
for (rg int i = 20; ~i; --i) if (dep[f[x][i]] >= dep[y]) x = f[x][i];
if (x == y) return x;
for (rg int i = 20; ~i; --i) if (f[x][i] != f[y][i]) x = f[x][i], y = f[y][i];
return f[x][0];
}
int main() {
int n = read(), q = read();
for (rg int i = 1; i < n; i++) {
int u = read(), v = read();
Add_edge(u, v), Add_edge(v, u);
}
dfs(1, 0);
for (rg int i = 1; i <= q; i++) {
int x = read(), y = read(), z = read();
int pos, minn = 2147483647, c;
//根据轮换性(所以这三段都长得差不多...)
int lca1 = LCA(x, y);
c = dep[x] + dep[y] - 2 * dep[lca1];
int lcaz = LCA(lca1, z);
c += dep[lca1] + dep[z] - 2 * dep[lcaz];
if (minn > c) pos = lca1, minn = c;
int lca2 = LCA(x, z);
c = dep[x] + dep[z] - 2 * dep[lca2];
int lcay = LCA(lca2, y);
c += dep[lca2] + dep[y] - 2 * dep[lcay];
if (minn > c) pos = lca2, minn = c;
int lca3 = LCA(y, z);
c = dep[y] + dep[z] - 2 * dep[lca3];
int lcax = LCA(lca3, x);
c += dep[x] + dep[lca3] - 2 * dep[lcax];
if (minn > c) pos = lca3, minn = c;
printf("%d %d
", pos, minn);
}
return 0;
}
完结撒花(qwq)