zoukankan      html  css  js  c++  java
  • K

    Given a connected undirected graph, tell if its minimum spanning tree is unique.

    Definition 1 (Spanning Tree): Consider a connected, undirected graph G = (V, E). A spanning tree of G is a subgraph of G, say T = (V’, E’), with the following properties:

    V’ = V.
    T is connected and acyclic.
    Definition 2 (Minimum Spanning Tree): Consider an edge-weighted, connected, undirected graph G = (V, E). The minimum spanning tree T = (V, E’) of G is the spanning tree that has the smallest total cost. The total cost of T means the sum of the weights on all the edges in E’.
    Input
    The first line contains a single integer t (1 <= t <= 20), the number of test cases. Each case represents a graph. It begins with a line containing two integers n and m (1 <= n <= 100), the number of nodes and edges. Each of the following m lines contains a triple (xi, yi, wi), indicating that xi and yi are connected by an edge with weight = wi. For any two nodes, there is at most one edge connecting them.
    Output
    For each input, if the MST is unique, print the total cost of it, or otherwise print the string ‘Not Unique!’.
    Sample Input
    2
    3 3
    1 2 1
    2 3 2
    3 1 3
    4 4
    1 2 2
    2 3 2
    3 4 2
    4 1 2
    Sample Output
    3
    Not Unique!

    判断最小生成树是否唯一,这里先把最小生成树求出来并记录加入树的那些边,之后每次删去其中一条边再求最小生成树,但是删去原树的边之后有可能无法连通,需要特判。最后比较两次的代价,不相等或者无法连通则树唯一,反之则不唯一。

    #include <iostream>
    #include <cstdio>
    #include <algorithm>
    using namespace std;
    #define maxn 105
    int fa[maxn], n, t, m, ans;
    bool flag = 0;
    struct Edge
    {
        int x, y, z;
        bool flag;
    } edge[maxn*maxn];
    bool cmp(Edge a,Edge b)
    {
        return a.z < b.z;
    }
    int find(int x)
    {
        if(x==fa[x])
            return x;
        return fa[x] = find(fa[x]);
    }
    int Kruskal(int k)  //删去原树中某边后可能无法构成树
    {
        int sum = 0;
        int cnt = 1;
        for (int i = 1; i <= n;i++)
            fa[i] = i;
        for (int i = 1; i <= m;i++)
        {
            if(i==k)
                continue;
            int x = find(edge[i].x);
            int y = find(edge[i].y);
            if(x==y)
                continue;
            fa[x] = y;
            cnt++;
            sum += edge[i].z;
        }
        if(cnt!=n)  //不连通
            return -1;
        return sum;
    }
    int main()
    {
        cin >> t;
        while(t--)
        {
            flag = 0;
            cin >> n >> m;
            for (int i = 1; i <= m;i++)
            {
                cin >> edge[i].x >> edge[i].y >> edge[i].z;
                edge[i].flag = 0;
            }
            for (int i = 1; i <= n;i++)
                fa[i] = i;
            sort(edge + 1, edge + 1 + m, cmp);
            int cnt = 0;
            for (int i = 1; i <= m;i++)
            {
                int x = find(edge[i].x);
                int y = find(edge[i].y);
                if(x==y)
                    continue;
                fa[x] = y;
                edge[i].flag = 1;   //标记这条边加入了MST
                ans += edge[i].z;
            }
            for (int i = 1; i <= m;i++)
            {
                if(edge[i].flag==0) //跳过不在树中的边
                    continue;
                int cnt = Kruskal(i);
                if(cnt==ans)
                {
                    flag = 1;
                    break;
                } 
            }
            if(flag)
                cout << "Not Unique!" << endl;
            else
                cout << ans << endl;
            ans = 0;
        }
    }
    

      

  • 相关阅读:
    Github开始强制使用PAT(Personal Access Token)了
    STM32F401的外部中断EXTI
    STM32F401的PWM输出
    STM32F103和STM32F401的ADC多通道采集DMA输出
    nRF24L01无线模块笔记
    51单片机(STC89C52)在Ubuntu下的开发
    51单片机(STC89C52)的中断和定时器
    51单片机的软件和硬件PCA/PWM输出
    Zadig 云原生持续交付 面向开发者设计的开源、高可用 CI/CD
    人生 乐观 悲观 英雄
  • 原文地址:https://www.cnblogs.com/zssst/p/11337840.html
Copyright © 2011-2022 走看看