Problem Description
ZJiaQ want to become a strong man, so he decided to play the mook jong。ZJiaQ want to put some mook jongs in his backyard. His backyard consist of n bricks that is 1*1,so it is 1*n。ZJiaQ want to put a mook jong in a brick. because of the hands of the mook jong, the distance of two mook jongs should be equal or more than 2 bricks. Now ZJiaQ want to know how many ways can ZJiaQ put mook jongs legally(at least one mook jong).
Input
There ar multiply cases. For each case, there is a single integer n( 1 < = n < = 60)
Output
Print the ways in a single line for each case.
Sample Input
1
2
3
4
5
6
Sample Output
1
2
3
5
8
12
递推搞定。。。
官方解题:
令f[i]为最后一个木人桩摆放在i位置的方案,令s[i]为f[i]的前缀和。很容易就能想到f[i]=s[i-3]+1,s[i]=s[i-1]+f[i],而s[n]即是所求答案。本题唯一一个值得注意的点就是当n接近60时会爆int。
开始的时候纠结在每个n能放几个,从而分组(1,2,3,4…)结果怎么也找不出规律。
当时A的时候用的也是递推的方式,放下第一个在第一个位置,剩下的只能是在剩下的i-3个位置放(不用关心在这i-3个位置到底放了几个) = a[i-3];在第二个位置,再在剩下的i-4个位置放 = a[i-4] ,一次类推。
#include<cstdio>
#include<cmath>
#include<stdlib.h>
#include<map>
#include<set>
#include<time.h>
#include<vector>
#include<queue>
#include<string>
#include<string.h>
#include<iostream>
#include<algorithm>
using namespace std;
#define INF 0x3f3f3f3f
#define LL long long
#define rd(a) scanf("%d",&a)
#define rdLL(a) scanf("%I64d",&a)
#define rdd(a,b) scanf("%d%d",&a,&b)
#define max(a,b) ((a)>(b)?(a):(b))
#define min(a,b) ((a)<(b)?(a):(b))
#define MOD 1000000007
#define mem0(a) memset(a,0,sizeof(a))
#define mem1(a) memset(a,1,sizeof(a))
typedef pair<int , int> P;
int main()
{
LL a[100];
int n;
a[1]=1,a[2]=2,a[3]=3;
LL sum=1,coun=2;
for(int i = 4;i<61;i++)
a[i]=sum+i,sum+=a[coun++];
while( ~rd(n) ){
printf("%I64d
",a[n]);
}
return 0;
}