题目很简单,但是感觉分析过程挺重要的,有点经典。
http://acm.hdu.edu.cn/showproblem.php?pid=2050
Problem Description
我们看到过很多直线分割平面的题目,今天的这个题目稍微有些变化,我们要求的是n条折线分割平面的最大数目。比如,一条折线可以将平面分成两部分,两条折线最多可以将平面分成7部分,具体如下所示。
![杭电acm2050 <wbr>折线分割平面 杭电acm2050 <wbr>折线分割平面](http://acm.hdu.edu.cn/data/images/C40-1008-1.jpg)
![杭电acm2050 <wbr>折线分割平面 杭电acm2050 <wbr>折线分割平面](http://acm.hdu.edu.cn/data/images/C40-1008-1.jpg)
Input
输入数据的第一行是一个整数C,表示测试实例的个数,然后是C 行数据,每行包含一个整数n(0<n<=10000),表示折线的数量。
Output
对于每个测试实例,请输出平面的最大分割数,每个实例的输出占一行。
Sample Input
2
1
2
1
2
Sample Output
2
7
分析:7
先看N条相交的直线最多能把平面分割成多少块
当添加第N条只显示,为了使平面最多,
则第N条直线有N-1个交点。由于每增加N个交点,就增加N+1个平面,所以用N条直线来分隔平面,最多的数是
1+1+2+3+…+n=1+n*(n+1)/2;
再看每次增加两条相互平行的直线
当第N次添加时,前面已经有2N-2条直线了,所以第N次添加时,第2N-1条直线和第2N条直线都各能增加2*(n-1)+1
所以第N次添加增加的面数是2[2(n-1)
1
如果把每次加进来的平行边让它们一头相交
则平面1、3已经合为一个面,因此,每一组平行线相交后,就会较少一个面,
所以所求就是平行线分割平面数减去N,为2n2
利用上述总结公式f(n)=2n2
#include<stdio.h> int main() { int T,n; scanf("%d",&T); while(T--&&scanf("%d",&n)!=EOF) printf("%d ",2*n*n-n+1); return 0; }
或者利用公式f(n)=f(n-1)+4*(n-1)+1
#include<stdio.h> int main() { __int64 s[10001]; int i,T,n; scanf("%d",&T); while(T--) { s[0]=1; scanf("%d",&n); for(i=1;i<=n;i++) s[i]=s[i-1]+4*(i-1)+1; printf("%I64d ",s[i-1]); } return 0; }