zoukankan      html  css  js  c++  java
  • POJ 3304 Segments(判断直线和线段相交)

    Segments
    Time Limit: 1000MS   Memory Limit: 65536K
    Total Submissions: 12150   Accepted: 3845

    Description

    Given n segments in the two dimensional space, write a program, which determines if there exists a line such that after projecting these segments on it, all projected segments have at least one point in common.

    Input

    Input begins with a number T showing the number of test cases and then, T test cases follow. Each test case begins with a line containing a positive integer n ≤ 100 showing the number of segments. After that, n lines containing four real numbers x1 y1 x2 y2 follow, in which (x1y1) and (x2y2) are the coordinates of the two endpoints for one of the segments.

    Output

    For each test case, your program must output "Yes!", if a line with desired property exists and must output "No!" otherwise. You must assume that two floating point numbers a and b are equal if |a - b| < 10-8.

    Sample Input

    3
    2
    1.0 2.0 3.0 4.0
    4.0 5.0 6.0 7.0
    3
    0.0 0.0 0.0 1.0
    0.0 1.0 0.0 2.0
    1.0 1.0 2.0 1.0
    3
    0.0 0.0 0.0 1.0
    0.0 2.0 0.0 3.0
    1.0 1.0 2.0 1.0

    Sample Output

    Yes!
    Yes!
    No!

    Source


    原博:http://blog.csdn.net/wangjian8006

    题目大意:给出n条线段两个端点的坐标,问所有线段投影到一条直线上,如果这些所有投影至少相交于一点就输出Yes!,否则输出No!。
    解题思路:如果有存在这样的直线,过投影相交区域作直线的垂线,该垂线必定与每条线段相交,问题转化为问是否存在一条线和所有线段相交
    若存在一条直线与所有线段相机相交,此时该直线必定经过这些线段的某两个端点,所以枚举任意两个端点即可。
    这里要主要的地方就是,题目说如果两个点的距离小于1e-8就等价于一点,所以要考虑重点

    /*
    Memory 200K
    Time   32MS 
    */
    #include <iostream>
    #include <math.h>
    using namespace std;
    #define MAXM 110
    #define EPS 1e-8
    
    typedef struct{
    	double x1,y1,x2,y2;
    }Segment;
    
    Segment segment[MAXM];
    int n;
    
    double distance(double x1,double y1,double x2,double y2){
    	return sqrt((x1-x2)*(x1-x2)+(y1-y2)*(y1-y2));
    }
    
    double corss(double x1,double y1,double x2,double y2,double x,double y){
    	return (x2-x1)*(y-y1)-(x-x1)*(y2-y1);
    }
    
    bool judge(double x1,double y1,double x2,double y2){
    	int i;
    	if(distance(x1,y1,x2,y2)<EPS) return 0;
    	for(i=0;i<n;i++){
    		if(corss(x1,y1,x2,y2,segment[i].x1,segment[i].y1)*
    			corss(x1,y1,x2,y2,segment[i].x2,segment[i].y2)>EPS) return 0;
    	}
    	return 1;
    }
    
    int main(){
    	int t,i,j,ans;
    	scanf("%d",&t);
    	while(t--){
    		scanf("%d",&n);
    		for(i=0;i<n;i++)
    			scanf("%lf%lf%lf%lf",&segment[i].x1,&segment[i].y1,&segment[i].x2,&segment[i].y2);
    		if(n==1) {printf("Yes!
    ");continue;}
    
    		ans=0;
    		for(i=0;i<n && !ans;i++)
    			for(j=i+1;j<n && !ans;j++){
    				if(judge(segment[i].x1,segment[i].y1,segment[j].x1,segment[j].y1) ||
    					judge(segment[i].x1,segment[i].y1,segment[j].x2,segment[j].y2) ||
    					judge(segment[i].x2,segment[i].y2,segment[j].x1,segment[j].y1) ||
    					judge(segment[i].x2,segment[i].y2,segment[j].x2,segment[j].y2))
    					ans=1;
    			}
    		if(ans) printf("Yes!
    ");
    		else printf("No!
    ");
    	}
    	return 0;




  • 相关阅读:
    Object-C(自学1)
    在vue-cli@3.X中配置代理解决开发环境的跨域问题
    记一次发布/更新npm包的过程及包版本管理
    MAC OS上开启Nginx静态文件服务器
    vuecli3打包部署 非根目录下 配置vue.config.js publicPath
    使用Anywhere开启一个nodejs静态文件服务器
    搭建node服务端并使用express()创建简单数据接口,最后返回前端请求的所需数据
    对正反向代理对理解
    Mac查看Python安装路径和版本
    onBlur方法在iOS和Android平台上的差异
  • 原文地址:https://www.cnblogs.com/zswbky/p/6717940.html
Copyright © 2011-2022 走看看