O - Treats for the Cows
POJ - 3186FJ has purchased N (1 <= N <= 2000) yummy treats for the cows who get money for giving vast amounts of milk. FJ sells one treat per day and wants to maximize the money he receives over a given period time.
The treats are interesting for many reasons:
The first treat is sold on day 1 and has age a=1. Each subsequent day increases the age by 1.
The treats are interesting for many reasons:
- The treats are numbered 1..N and stored sequentially in single file in a long box that is open at both ends. On any day, FJ can retrieve one treat from either end of his stash of treats.
- Like fine wines and delicious cheeses, the treats improve with age and command greater prices.
- The treats are not uniform: some are better and have higher intrinsic value. Treat i has value v(i) (1 <= v(i) <= 1000).
- Cows pay more for treats that have aged longer: a cow will pay v(i)*a for a treat of age a.
The first treat is sold on day 1 and has age a=1. Each subsequent day increases the age by 1.
Line 1: A single integer, N
Lines 2..N+1: Line i+1 contains the value of treat v(i)
Lines 2..N+1: Line i+1 contains the value of treat v(i)
Line 1: The maximum revenue FJ can achieve by selling the treats
5 1 3 1 5 2
43
Explanation of the sample:
Five treats. On the first day FJ can sell either treat #1 (value 1) or treat #5 (value 2).
FJ sells the treats (values 1, 3, 1, 5, 2) in the following order of indices: 1, 5, 2, 3, 4, making 1x1 + 2x2 + 3x3 + 4x1 + 5x5 = 43.
Five treats. On the first day FJ can sell either treat #1 (value 1) or treat #5 (value 2).
FJ sells the treats (values 1, 3, 1, 5, 2) in the following order of indices: 1, 5, 2, 3, 4, making 1x1 + 2x2 + 3x3 + 4x1 + 5x5 = 43.
题目大意:给出的一系列的数字,可以看成一个双向队列,每次只能从队首或者队尾出队,第n个出队就拿这个数乘以n,最后将和加起来,求最大和
状态:dp[i][j]表示第i次移出j位置所得到的最大值
状态转移方程:dp[i][j] = max(dp[i-1][j-1]+arr[j]*i,dp[i-1][j]+arr[N-(i-j)+1]*i)
除了背包外,第一次完全自己独立思考的一道DP题目;
#include <iostream> #include <stdio.h> #include <cstring> using namespace std; #define MAXN 2005 #define INF 0x3f3f3f3f int arr[MAXN]; int dp[MAXN][MAXN];///dp[i][j]表示第i次移出j位置所得到的最大值 int main(){ int N; while(~scanf("%d",&N)){ for(int i=1;i<=N;++i) scanf("%d",&arr[i]); memset(dp[1],0,sizeof(dp[1])); dp[1][1]=1*arr[1],dp[1][0]=1*arr[N]; for(int i=2;i<=N;i++){ ///第i次移出 //dp[i][j] = -INF ; for(int j=0;j<=i;j++){ if(j==0) dp[i][j] = dp[i-1][j]+arr[N-(i-j)+1]*i; else if(j==i) dp[i][j] = dp[i-1][j-1]+arr[i]*i; else dp[i][j] = max(dp[i-1][j-1]+arr[j]*i,dp[i-1][j]+arr[N-(i-j)+1]*i) ; } } int mmax=-INF; for(int i=0;i<N;i++) mmax=max(mmax,dp[N][i]); printf("%d ",mmax); } return 0; }
自己闲的*疼尝试了一把滚动数组,突然下面的代码还是会蒙圈的。。。
#include <iostream> #include <stdio.h> #include <cstring> using namespace std; #define MAXN 2005 #define INF 0x3f3f3f3f int arr[MAXN]; int dp[3][MAXN];///dp[i][j]表示第i次移出j位置所得到的最大值 int main(){ int N; while(~scanf("%d",&N)){ for(int i=1;i<=N;++i) scanf("%d",&arr[i]); memset(dp[1],0,sizeof(dp[1])); dp[1][1]=1*arr[1],dp[1][0]=1*arr[N]; int nw=1,old=2; for(int i=2,j;i<=N;i++){ ///第i次移出 for(j=0,swap(nw,old);j<=i;j++){ if(j==0) dp[nw][j] = dp[old][j]+arr[N-(i-j)+1]*i; else if(j==i) dp[nw][j] = dp[old][j-1]+arr[i]*i; else dp[nw][j] = max(dp[old][j-1]+arr[j]*i,dp[old][j]+arr[N-(i-j)+1]*i) ; } } int mmax=-INF; int tmp = (N%2==0 ? 2 :1); for(int i=0;i<N;i++) mmax=max(mmax,dp[tmp][i]); printf("%d ",mmax); } return 0; }
其实最简单的还是网上的
由于每次要么从头取,要么从尾取,于是状态转移方程为:
dp[i][j]=max(dp[i-1][j]+v[i]*(i+j),dp[i][j-1]+v[n-j+1]*(i+j));
所以DP的题目还是在开始的时候状态的选取还是很重要的,这直接影响到了后来的状态转移方程的选取!!!谨记
#include<stdio.h> #include<algorithm> using namespace std; int dp[2005][2005]; int v[2005]; int max(int a,int b) { if(a>b) return a; else return b; } int main() { int i,j,n; while(scanf("%d",&n)!=EOF) { for(i=1;i<=n;i++) scanf("%d",&v[i]); memset(dp,0,sizeof(dp)); for(i=0;i<=n;i++) for(j=0;i+j<=n;j++) { if(i==0&&j==0) dp[i][j]=0; else if(i==0&&j!=0) dp[i][j]=max(dp[i][j],dp[i][j-1]+v[n-j+1]*(i+j)); else if(i!=0&&j==0) dp[i][j]=max(dp[i][j],dp[i-1][j]+v[i]*(i+j)); else dp[i][j]=max(dp[i-1][j]+v[i]*(i+j),dp[i][j-1]+v[n-j+1]*(i+j)); } int ans=0; for(i=0;i<=n;i++) if(dp[i][n-i]>ans) ans=dp[i][n-i]; printf("%d/n",ans); } return 0; }