O - Treats for the Cows
POJ - 3186FJ has purchased N (1 <= N <= 2000) yummy treats for the cows who get money for giving vast amounts of milk. FJ sells one treat per day and wants to maximize the money he receives over a given period time.
The treats are interesting for many reasons:
The first treat is sold on day 1 and has age a=1. Each subsequent day increases the age by 1.
The treats are interesting for many reasons:
- The treats are numbered 1..N and stored sequentially in single file in a long box that is open at both ends. On any day, FJ can retrieve one treat from either end of his stash of treats.
- Like fine wines and delicious cheeses, the treats improve with age and command greater prices.
- The treats are not uniform: some are better and have higher intrinsic value. Treat i has value v(i) (1 <= v(i) <= 1000).
- Cows pay more for treats that have aged longer: a cow will pay v(i)*a for a treat of age a.
The first treat is sold on day 1 and has age a=1. Each subsequent day increases the age by 1.
Line 1: A single integer, N
Lines 2..N+1: Line i+1 contains the value of treat v(i)
Lines 2..N+1: Line i+1 contains the value of treat v(i)
Line 1: The maximum revenue FJ can achieve by selling the treats
5 1 3 1 5 2
43
Explanation of the sample:
Five treats. On the first day FJ can sell either treat #1 (value 1) or treat #5 (value 2).
FJ sells the treats (values 1, 3, 1, 5, 2) in the following order of indices: 1, 5, 2, 3, 4, making 1x1 + 2x2 + 3x3 + 4x1 + 5x5 = 43.
Five treats. On the first day FJ can sell either treat #1 (value 1) or treat #5 (value 2).
FJ sells the treats (values 1, 3, 1, 5, 2) in the following order of indices: 1, 5, 2, 3, 4, making 1x1 + 2x2 + 3x3 + 4x1 + 5x5 = 43.
题目大意:给出的一系列的数字,可以看成一个双向队列,每次只能从队首或者队尾出队,第n个出队就拿这个数乘以n,最后将和加起来,求最大和
状态:dp[i][j]表示第i次移出j位置所得到的最大值
状态转移方程:dp[i][j] = max(dp[i-1][j-1]+arr[j]*i,dp[i-1][j]+arr[N-(i-j)+1]*i)
除了背包外,第一次完全自己独立思考的一道DP题目;
#include <iostream>
#include <stdio.h>
#include <cstring>
using namespace std;
#define MAXN 2005
#define INF 0x3f3f3f3f
int arr[MAXN];
int dp[MAXN][MAXN];///dp[i][j]表示第i次移出j位置所得到的最大值
int main(){
int N;
while(~scanf("%d",&N)){
for(int i=1;i<=N;++i)
scanf("%d",&arr[i]);
memset(dp[1],0,sizeof(dp[1]));
dp[1][1]=1*arr[1],dp[1][0]=1*arr[N];
for(int i=2;i<=N;i++){ ///第i次移出
//dp[i][j] = -INF ;
for(int j=0;j<=i;j++){
if(j==0) dp[i][j] = dp[i-1][j]+arr[N-(i-j)+1]*i;
else if(j==i) dp[i][j] = dp[i-1][j-1]+arr[i]*i;
else dp[i][j] = max(dp[i-1][j-1]+arr[j]*i,dp[i-1][j]+arr[N-(i-j)+1]*i) ;
}
}
int mmax=-INF;
for(int i=0;i<N;i++)
mmax=max(mmax,dp[N][i]);
printf("%d
",mmax);
}
return 0;
}
自己闲的*疼尝试了一把滚动数组,突然下面的代码还是会蒙圈的。。。
#include <iostream>
#include <stdio.h>
#include <cstring>
using namespace std;
#define MAXN 2005
#define INF 0x3f3f3f3f
int arr[MAXN];
int dp[3][MAXN];///dp[i][j]表示第i次移出j位置所得到的最大值
int main(){
int N;
while(~scanf("%d",&N)){
for(int i=1;i<=N;++i)
scanf("%d",&arr[i]);
memset(dp[1],0,sizeof(dp[1]));
dp[1][1]=1*arr[1],dp[1][0]=1*arr[N];
int nw=1,old=2;
for(int i=2,j;i<=N;i++){ ///第i次移出
for(j=0,swap(nw,old);j<=i;j++){
if(j==0) dp[nw][j] = dp[old][j]+arr[N-(i-j)+1]*i;
else if(j==i) dp[nw][j] = dp[old][j-1]+arr[i]*i;
else dp[nw][j] = max(dp[old][j-1]+arr[j]*i,dp[old][j]+arr[N-(i-j)+1]*i) ;
}
}
int mmax=-INF;
int tmp = (N%2==0 ? 2 :1);
for(int i=0;i<N;i++)
mmax=max(mmax,dp[tmp][i]);
printf("%d
",mmax);
}
return 0;
}
其实最简单的还是网上的
由于每次要么从头取,要么从尾取,于是状态转移方程为:
dp[i][j]=max(dp[i-1][j]+v[i]*(i+j),dp[i][j-1]+v[n-j+1]*(i+j));
所以DP的题目还是在开始的时候状态的选取还是很重要的,这直接影响到了后来的状态转移方程的选取!!!谨记
#include<stdio.h>
#include<algorithm>
using namespace std;
int dp[2005][2005];
int v[2005];
int max(int a,int b)
{
if(a>b)
return a;
else
return b;
}
int main()
{
int i,j,n;
while(scanf("%d",&n)!=EOF)
{
for(i=1;i<=n;i++)
scanf("%d",&v[i]);
memset(dp,0,sizeof(dp));
for(i=0;i<=n;i++)
for(j=0;i+j<=n;j++)
{
if(i==0&&j==0)
dp[i][j]=0;
else if(i==0&&j!=0)
dp[i][j]=max(dp[i][j],dp[i][j-1]+v[n-j+1]*(i+j));
else if(i!=0&&j==0)
dp[i][j]=max(dp[i][j],dp[i-1][j]+v[i]*(i+j));
else
dp[i][j]=max(dp[i-1][j]+v[i]*(i+j),dp[i][j-1]+v[n-j+1]*(i+j));
}
int ans=0;
for(i=0;i<=n;i++)
if(dp[i][n-i]>ans)
ans=dp[i][n-i];
printf("%d/n",ans);
}
return 0;
}