zoukankan      html  css  js  c++  java
  • POJ 1458 Common Subsequence(LCS)


    Common Subsequence

     

    A subsequence of a given sequence is the given sequence with some elements (possible none) left out. Given a sequence X = < x1, x2, ..., xm > another sequence Z = < z1, z2, ..., zk > is a subsequence of X if there exists a strictly increasing sequence < i1, i2, ..., ik > of indices of X such that for all j = 1,2,...,k, x ij = zj. For example, Z = < a, b, f, c > is a subsequence of X = < a, b, c, f, b, c > with index sequence < 1, 2, 4, 6 >. Given two sequences X and Y the problem is to find the length of the maximum-length common subsequence of X and Y.
    Input
    The program input is from the std input. Each data set in the input contains two strings representing the given sequences. The sequences are separated by any number of white spaces. The input data are correct.
    Output
    For each set of data the program prints on the standard output the length of the maximum-length common subsequence from the beginning of a separate line.
    Sample Input
    abcfbc         abfcab
    programming    contest 
    abcd           mnp
    Sample Output
    4
    2
    0

    裸题,不解释,不好意思我又刷博客了。。。

    1)最长公共子序列的长度的动态规划方程

        设有字符串a[0...n],b[0...m],下面就是递推公式。字符串a对应的是二维数组num的行,字符串b对应的是二维数组num的列。

        

        另外,采用二维数组flag来记录下标ij的走向。数字"1"表示,斜向下;数字"2"表示,水平向右;数字"3"表示,竖直向下。这样便于以后的求解最长公共子序列。


    #include <iostream>
    #include <stdio.h>
    #include <cstring>
    using namespace std;
    int main()
    {
        int i,j,dp[2][10086],t;
        char a[10086],b[10086];
        bool now,pre;
        while(~scanf("%s%s",a,b))
        {
            memset(dp,0,sizeof(dp));
            int lena=strlen(a),lenb=strlen(b);
            for(now=1,pre=0,i=0; i<lena; i++)
                for(swap(now,pre),j=0; j<lenb; j++)
                    if(a[i]==b[j])
                        dp[now][j+1]=dp[pre][j]+1;
                    else
                        dp[now][j+1]=dp[pre][j+1]>dp[now][j]?dp[pre][j+1]:dp[now][j];
            printf("%d
    ",dp[now][lenb]);
        }
        return 0;
    }
    



  • 相关阅读:
    SAP ALE 事务代码
    jquery插件——仿新浪微博限制输入字数的textarea
    《响应式web设计》读书笔记(五)CSS3过渡、变形和动画
    《响应式web设计》读书笔记(四)HTML5与CSS3
    MySQL 数据类型
    深入理解JavaScript中的this关键字
    SQL Server 存储过程、触发器、游标
    SQL Server 视图
    SQL Server表的创建及索引的控制
    SQL Server 查询语句(二)
  • 原文地址:https://www.cnblogs.com/zswbky/p/6792911.html
Copyright © 2011-2022 走看看