zoukankan      html  css  js  c++  java
  • 相关数学理论和公式(素数)

    素数性质


    1. 素数是大于1的正整数且只能被1和自身整除
    2. 设p是素数且(p|ab),则必有(p|a)或者(p|b)

    素数定理


    [pi(x)/(x/ln(x))=1 ]

    素数的猜想


    伯特兰猜想:对于任意正整数(n>1),存在一个素数(p),使得(n<p<2n)
    孪生素数猜想:存在无穷多的形如(p)(p+2)的素数对
    歌德巴赫猜想:每个大于2的正偶数可以写成两个素数的和
    (n^2+1)猜想:存在无穷多个形如(n^2+1)的素数,其中n是正整数。

    素数筛


    Eratosthenes筛法

    //vis[i]=1,表示i是合数
    memset(vis,0,sizeof(vis));
    for(int i=2;i<=n;i++) 
       for(int j=i*2;j<=n;j++) vis[j]=1;
    //稍加优化
    int m=sqrt(n+0.5);
    memset(vis,0,sizeof(vis));
    for(int i=2;i<=m;i++) if(!vis[i])
       for(int j=i*i;j<=n;j+=i) vis[j]=1;
    

    算术基本定理:


    1. 若n的素因子分解表达式为(n=p_1^{a_1}+p_2^{a_2}+p_3^{a_3}+cdots+p_k^{a_k})
      (d(n))为n的所有因子之和:(d(n)=(a_1+1) imes(a_2+1) imes(a_3+1)cdots(a_k+1))
      (phi(n))为所有因子之和:$$phi(n)=frac{p_1{a_1+1}-1}{p_1-1} imesfrac{p_2{a_2+1}-1}{p_2-1}cdotsfrac{p_k^{a_k+1}-1}{p_k-1}$$
    2. 若a的素因子分解表达式为(x=p_1^{a_1}+p_2^{a_2}+p_3^{a_3}+cdots+p_k^{a_k})
      y的素因子分解表达式为(a=p_1^{b_1}+p_2^{b_2}+p_3^{b_3}+cdots+p_k^{b_k})

    [gcd(x,y)=p_1^{min(a_1,b_1)}+p_2^{min(a_2,b_2)}+p_3^{min(a_3,b_3)}+cdots+p_k^{min(a_k,b_k)} ]

    [lcm(x,y)=p_1^{max(a_1,b_1)}+p_2^{max(a_2,b_2)}+p_3^{max(a_3,b_3)}+cdots+p_k^{max(a_k,b_k)} ]

    1. (lcm(a,b) imes gcd(a,b)=a imes b)
    2. (n!)的素因子分解中的素数p的幂为$$[n/p]+[n/p2]+[n/p3]+cdots$$
  • 相关阅读:
    函数中的参数说明
    向脚本传递参数
    声明变量类型,数据类型转换
    获取脚本所在目录
    CSV输入输出
    判断计算机是否可以ping通
    REST风格框架:从MVC到前后端分离***
    angularjs + springmvc 上传和下载
    JDBC进行简单的增删改查
    关于有时候导入maven项目时候报错(有红色叹号,类中导入的包提示"the import java.util cannot be resolve,")
  • 原文地址:https://www.cnblogs.com/zsyacm666666/p/7194136.html
Copyright © 2011-2022 走看看