zoukankan      html  css  js  c++  java
  • 1.6 饮料供货

    问题:

    总共n中饮料,每种饮料表示为(S[i],V[i],C[i],H[i],B[i]),S表示名称,V表示容量。C表示能够买的最大数量,H表示惬意度,B表示实际购买量
    在V[i]*B[i]求和=V的情况下,H[i]*B[i]求和最大化


    最优化。毫无疑问。考虑动态规划跟贪心。

    状态转移方程:

    OptV’i)表示从 到 n-1 种饮料中,Ci 为第i种饮料可能的最大数量。算出总量为V’的方案中惬意度之和的最大值。

    那么递归式就应该是:

    OptV’i= max{ k * H+ OptV’-Vi * ki+1}k=012…Cii=012…n-1

    这里我认为须要说明给出的饮料组合终于能够组合出V



    递推:

    int Cal(int V, int T) {
    	opt[0][T] = 0;									//边界条件,T为全部饮料种类
    	for(int i = 0; i <= V; ++i) opt[i][T] = -INF;	//边界条件
    	for(int j = T-1; j >= 0; --j) {
    		for(int i = 0; i <= V; ++i) {
    			opt[i][j] = -INF;
    			for(int k = 0; k <= C[j]; ++k) {        //遍历第j种饮料选取数量k
    				if(i < k * V[j]) break;
    				int x = opt[i - V[j] * k][j + 1];
    				if(x != -INF) {
    					x += k * H[j];
    					if(x > opt[i][j]) opt[i][j] = x;
    				}
    			}
    		}
    	}
    	return opt[V][0];
    }



    记忆化搜索:

    int opt[V+1][T+1];    //初始化时opt中存储值为-1,表示该子问题尚未被求解
    
    int Cal(int V, int type) {
    	if(type == T) {
    		if(V == 0) return 0;
    		else return -INF;
    	}
    	if(V < 0) return -INF;
    	if(V == 0) return 0;
    	else if(opt[V][type] != -1) return opt[V][type];  //该子问题已求解,则直接返回子问题的解
    	int ret = -INF;                                   //子问题尚未求解,则求解该子问题
    	for(int i = 0; i <= C[type]; ++i) {               
    		int temp = Cal(V - i * V[type], type + 1);
    		if(temp != -INF) {
    			temp += i * H[type];
    			if(temp > ret) ret = temp;
    		}
    	}
    	return opt[V][type] = ret;
    }



  • 相关阅读:
    探讨变量的内存分配方式
    色彩之RGB和灰阶
    Perl语言:qw简写
    【转】位操作
    [转]Perl学习笔记
    Spaghetti code&Ravioli code&Lasagna code&Spaghetti with meatballs
    交叉编译lsusb
    GCC,LLVM,Clang编译器对比
    如何判断自己是否到了该辞职的时候
    Javascript Array和String的互转换。
  • 原文地址:https://www.cnblogs.com/zsychanpin/p/6789135.html
Copyright © 2011-2022 走看看