D. CGCDSSQ
time limit per test
2 seconds
memory limit per test
256 megabytes
input
standard input
output
standard outputGiven a sequence of integers a1, ..., an and q queries x1, ..., xq on it. For each query xi you have to count the number of pairs (l, r)such that 1 ≤ l ≤ r ≤ n and gcd(al, al + 1, ..., ar) = xi.
is a greatest common divisor of v1, v2, ..., vn, that is equal to a largest positive integer that divides all vi.
Input
The first line of the input contains integer n, (1 ≤ n ≤ 105), denoting the length of the sequence. The next line contains n space separated integers a1, ..., an, (1 ≤ ai ≤ 109).
The third line of the input contains integer q, (1 ≤ q ≤ 3 × 105), denoting the number of queries. Then follows q lines, each contain an integer xi, (1 ≤ xi ≤ 109).
Output
For each query print the result in a separate line.
Sample test(s)
input
3 2 6 3 5 1 2 3 4 6
output
1 2 2 0 1
input
7 10 20 3 15 1000 60 16 10 1 2 3 4 5 6 10 20 60 1000
output
14 0 2 2 2 0 2 2 1 1
题意:给出n个数,然后给q个询问,每次询问给出一个x。问有多少个区间的GCD是x
思路:比赛的时候yy的一个做法
首先预处理出全部值的区间个数,这个用map存一下就好了,设为ans
然后再开两个map 分别为mp mp2
mp存的是以Xi结尾的全部区间的GCD的数的个数
每次从Xi转移到Xi+1,仅仅须要累加以Xi结尾的区间的全部mp值与Xi+1的GCD的个数就好了,能够暂时赋给mp2,然后再赋给mp
依照这种方法从左往右for一遍就好了
然后查询的时候直接在ans里查就好了
复杂度大概是O(N*(每一个数的因子个数))