题面
题解
概率dp, 应该做得还是比较少的
设(f[i][j])为该圈有(i)人时, 第(j)个人最后胜利的概率
枚举选择第几张卡牌, 设其值为(card[k]), 那么被淘汰的则是(card[k] \% i), 分类讨论
- (card[k] \% i < j), 则(f[i][j] = f[i][j] + f[i - 1][(j - (card[k] \% i + 1)-1] / m)
- (card[k]\%i > j), 则(f[i][j] = f[i][j] + f[i - 1][i - ((card[k] \% i + 1 - j + 1) - 2)])
- (card[k] \% i == j), (j)被淘汰了...
就是这样, 最后算百分数不要忘记乘一百
Code
#include <algorithm>
#include <iostream>
#include <cstring>
#include <cstdlib>
#include <cstdio>
#include <vector>
#define itn int
#define reaD read
#define N 55
using namespace std;
int n, m, card[N];
double f[N][N];
inline int read()
{
int x = 0, w = 1; char c = getchar();
while(c < '0' || c > '9') { if (c == '-') w = -1; c = getchar(); }
while(c >= '0' && c <= '9') { x = x * 10 + c - '0'; c = getchar(); }
return x * w;
}
int main()
{
n = reaD(); m = read();
for(int i = 1; i <= m; i++) card[i] = reaD();
f[1][1] = 1;
for(int i = 2; i <= n; i++)
for(int j = 1; j <= i; j++)
for(int k = 1; k <= m; k++)
{
int num = card[k] % i; if(!num) num = i;
if(num > j) f[i][j] += f[i - 1][i - num + j] / m;
else if(num < j) f[i][j] += f[i - 1][j - num] / m;
}
for(int i = 1; i <= n; i++)
printf("%.2lf%c%c", f[n][i] * 100, '%', i == n ? '
' : ' ');
return 0;
}