指数有递推式,可以通过矩阵快速幂来求解。再用下面这公式快速幂取模即可。
(C是素数)
#include<cstdio> #include<cstring> #include<cmath> #include<queue> #include<algorithm> using namespace std; long long p,MOD; long long a, b, c; long long n; struct Matrix { long long A[5][5]; int R, C; Matrix operator*(Matrix b); }; Matrix X, Y, Z; Matrix Matrix::operator*(Matrix b) { Matrix c; memset(c.A, 0, sizeof(c.A)); int i, j, k; for (i = 1; i <= R; i++) for (j = 1; j <= C; j++) for (k = 1; k <= C; k++) c.A[i][j] = (c.A[i][j] + (A[i][k] * b.A[k][j]) % MOD) % MOD; c.R = R; c.C = b.C; return c; } long long mod_exp(long long a, long long b, long long c) { long long res, t; res = 1 % c; t = a % c; while (b) { if (b & 1) res = res * t % c; t = t * t % c; b >>= 1; } return res; } void init() { n = n - 2; memset(X.A, 0, sizeof X.A); memset(Y.A, 0, sizeof Y.A); memset(Z.A, 0, sizeof Z.A); Z.R = 1; Z.C = 3; Z.A[1][1] = 1; Z.A[1][2] = 0; Z.A[1][3] = b%MOD; X.R = X.C = 3; X.A[1][1] = 1; X.A[1][2] = 0; X.A[1][3] = b%MOD; X.A[2][1] = 0; X.A[2][2] = 0; X.A[2][3] = 1; X.A[3][1] = 0; X.A[3][2] = 1; X.A[3][3] = c%MOD; Y.R = Y.C = 3; Y.A[1][1] = 1; Y.A[1][2] = 0; Y.A[1][3] = 0; Y.A[2][1] = 0; Y.A[2][2] = 1; Y.A[2][3] = 0; Y.A[3][1] = 0; Y.A[3][2] = 0; Y.A[3][3] = 1; } void work() { while (n) { if (n % 2 == 1) Y = Y*X; n = n >> 1; X = X*X; } Z = Z*Y; printf("%lld ", mod_exp(a, Z.A[1][3]+MOD, p)); } int main() { int T; scanf("%d", &T); while (T--) { scanf("%lld%lld%lld%lld%lld", &n, &a, &b, &c, &p); if (n == 1) printf("1 "); if (n == 2) printf("%lld ", mod_exp(a, b, p)); else { MOD = p - 1; init(); work(); } } return 0; }