zoukankan      html  css  js  c++  java
  • HDU 5833 Zhu and 772002

    高斯消元。求有多少不同组解。

    #pragma comment(linker, "/STACK:1024000000,1024000000")
    #include<cstdio>
    #include<cstring>
    #include<cmath>
    #include<algorithm>
    #include<vector>
    #include<map>
    #include<set>
    #include<queue>
    #include<stack>
    #include<iostream>
    using namespace std;
    typedef long long LL;
    const double pi=acos(-1.0),eps=1e-8;
    void File()
    {
        freopen("D:\in.txt","r",stdin);
        freopen("D:\out.txt","w",stdout);
    }
    template <class T>
    inline void read(T &x)
    {
        char c = getchar(); x = 0;while(!isdigit(c)) c = getchar();
        while(isdigit(c)) { x = x * 10 + c - '0'; c = getchar();  }
    }
    
    const int MAXN=310;
    int equ, var;///equ个方程 var个变量
    int a[MAXN][MAXN];///增广矩阵
    int x[MAXN];///解的数目
    bool free_x[MAXN];///判断是不是自由变元
    int free_num;///自由变元的个数
    
    inline int GCD(int m, int n)
    {
        if(n == 0)
            return m;
        return GCD(n, m%n);
    }
    inline int LCM(int a, int b)
    {
        return a/GCD(a,b)*b;
    }
    
    int Gauss()
    {
        int Max_r;///当前列绝对值最大的存在的行
        ///col:处理当前的列
        int row = 0;
        int free_x_num;
        int free_index = -1;
        for(int col=0; row<equ&&col<var; row++,col++)
        {
            Max_r = row;
            for(int i=row+1; i<equ; i++)
                if(abs(a[i][col]) > abs(a[Max_r][col]))
                    Max_r = i;
    
            if(Max_r != row)
                for(int i=0; i<var+1; i++)
                    swap(a[row][i], a[Max_r][i]);
    
            if(a[row][col] == 0)
            {
                row--;
                continue;
            }
            for(int i=row+1; i<equ; i++)
            {
                if(a[i][col])
                {
                    int lcm = LCM(abs(a[i][col]), abs(a[row][col]));
                    int tp1=lcm/abs(a[i][col]), tp2=lcm/abs(a[row][col]);
                    if(a[row][col]*a[i][col] < 0)
                        tp2 = -tp2;
                    for(int j=col; j<var+1; j++)
                    {
                        a[i][j] = tp1*a[i][j]-tp2*a[row][j];
                        a[i][j] = (a[i][j]%2+2)%2;
                    }
                }
            }
        }
        if(row < var)
        {
            for(int i=row-1; i>=0; i--)
            {
                free_x_num = 0;
                for(int j=0; j<var; j++)
                    if(a[i][j] && free_x[j])
                    {
                        free_x_num++;
                        free_index = j;
                    }
                if(free_x_num>1 || free_index==-1)
                    continue;
                int tmp = a[i][var];
                for(int j=0; j<var; j++)
                    if(a[i][j] && j!=free_index)
                    {
                        tmp -= a[i][j]*x[j];
                        tmp = (tmp%2+2)%2;
                    }
                x[free_index] = (tmp*a[i][free_index]);/// 求出该变元.
                x[free_index] %= 2;
                free_x[free_index] = 0; /// 该变元是确定的.
            }
            return var - row;///自由变元的个数
        }
    
        for(int i=var-1; i>=0; i--)
        {
            int tmp = a[i][var];
            for(int j=i+1; j<var; j++)
                if (a[i][j])
                {
                    tmp -= a[i][j]*x[j];
                    tmp = (tmp%2+2)%2;
                }
            x[i] = tmp*a[i][i];
            x[i] %= 2;
        }
        return 0;///唯一解
    }
    
    const int maxn=2005;
    bool f[maxn]; int p[maxn], t;
    
    void prime()
    {
        for(int i=2;i<=2000;i++) f[i]=1;
        for(int i=2;i<=2000;i++)
        {
            if(!f[i]) continue; p[t++]=i;
            int tmp=2*i; while(tmp<=2000) f[tmp]=0,tmp=tmp+i;
        }
    }
    
    int T,n;
    
    int main()
    {
        prime(); int cas=1;
        scanf("%d",&T); while(T--)
        {
            scanf("%d",&n);
    
            memset(a,0,sizeof a);
            memset(x,0,sizeof x);
            memset(free_x,0,sizeof free_x);
            free_num=0;
    
            for(int i=0;i<n;i++)
            {
                LL num; scanf("%lld",&num);
                for(int j=0;j<t;j++)
                {
                    while(num%p[j]==0)  num=num/p[j],a[j][i]++;
                    a[j][i]=a[j][i]%2;
                }
                
            }
    
            equ=t; var=n;
            int S = Gauss();
    
            long long ans=1, MOD=1e9+7;
            for(int i=1;i<=S;i++) ans=ans*2%MOD;
            printf("Case #%d:
    ",cas++);
            printf("%lld
    ",(ans-1+MOD)%MOD);
    
        }
        return 0;
    }
  • 相关阅读:
    聚集索引
    第一天 尝试Thread
    sql 分区函数
    sql 查询表定义
    千万数量级分页存储过程
    成语解释
    sql 分组查询满足条件所以数据
    sql存储过程
    联表更新的反思
    从表保存了主表的id,以分号分隔,怎么样用一条sql搞定主表满足条件的查询? 不希望单独写存储过程,或者后台拆成int后传进来,就一条sql 搞定,一条
  • 原文地址:https://www.cnblogs.com/zufezzt/p/5782082.html
Copyright © 2011-2022 走看看