数论。
如果$x$不唯一,假设存在两个解,较大的为${x_1}$,较小的为${x_2}$。
那么,
$left{ {egin{array}{*{20}{c}}
{{x_1}\% {c_i} = {x_2}\% {c_i}}\
{{x_1}\% k
e {x_2}\% k}
end{array}}
ight. Rightarrow left{ {egin{array}{*{20}{c}}
{({x_1} - {x_2})\% {c_i} = 0}\
{({x_1} - {x_2})\% k
e 0}
end{array}}
ight.$。
$∵lcm({c_1},{c_2},{c_3},......,{c_n})\% {c_i} = 0$
$∴lcm({c_1},{c_2},{c_3},......,{c_n})\% ({x_1} - {x_2}) = 0$
$∵({x_1} - {x_2})\% k e 0$
$∴lcm({c_1},{c_2},{c_3},......,{c_n})\% k e 0$
也就是说:如果解不唯一,那么$lcm({c_1},{c_2},{c_3},......,{c_n})\% k e 0$。
换句话说就是:如果解唯一,那么$lcm({c_1},{c_2},{c_3},......,{c_n})\% k = 0$。
#pragma comment(linker, "/STACK:1024000000,1024000000") #include<cstdio> #include<cstring> #include<cmath> #include<algorithm> #include<vector> #include<map> #include<set> #include<queue> #include<stack> #include<iostream> using namespace std; typedef long long LL; const double pi=acos(-1.0),eps=1e-6; void File() { freopen("D:\in.txt","r",stdin); freopen("D:\out.txt","w",stdout); } template <class T> inline void read(T &x) { char c = getchar(); x = 0;while(!isdigit(c)) c = getchar(); while(isdigit(c)) { x = x * 10 + c - '0'; c = getchar(); } } LL gcd(LL a,LL b) { if(b==0) return a; return gcd(b,a%b); } LL lcm(LL a,LL b) { return a*b/gcd(a,b); } int n; LL ans=1,k; int main() { scanf("%d%lld",&n,&k); for(int i=1;i<=n;i++) { LL x; scanf("%lld",&x); ans=lcm(ans,x)%k; } if(ans) printf("No "); else printf("Yes "); return 0; }