zoukankan      html  css  js  c++  java
  • URAL 1997 Those are not the droids you're looking for

    二分图的最大匹配。

    每一个$0$与$1$配对,只建立满足时差大于等于$a$或者小于等于$b$的边,如果二分图最大匹配等于$n/2$,那么有解,遍历每一条边输出答案,否则无解。

    #include<map>
    #include<set>
    #include<ctime>
    #include<cmath>
    #include<queue>
    #include<string>
    #include<vector>
    #include<cstdio>
    #include<cstring>
    #include<iostream>
    #include<algorithm>
    #include<functional>
    using namespace std;
    #define ms(x,y) memset(x,y,sizeof(x))
    #define rep(i,j,k) for(int i=j;i<=k;i++)
    #define per(i,j,k) for(int i=j;i>=k;i--)
    #define loop(i,j,k) for (int i=j;i!=-1;i=k[i])
    #define inone(x) scanf("%d",&x)
    #define intwo(x,y) scanf("%d%d",&x,&y)
    #define inthr(x,y,z) scanf("%d%d%d",&x,&y,&z)
    #define infou(x,y,z,p) scanf("%d%d%d%d",&x,&y,&z,&p)
    #define lson x<<1,l,mid
    #define rson x<<1|1,mid+1,r
    #define mp(i,j) make_pair(i,j)
    #define ft first
    #define sd second
    typedef long long LL;
    typedef pair<int, int> pii;
    const int low(int x) { return x&-x; }
    const int INF = 0x7FFFFFFF;
    const int mod = 1e9 + 7;
    const int N = 1e6 + 10;
    const int M = 1e4 + 1;
    const double eps = 1e-10;
    
    int a,b,n;
    int T[1010],f[1010];
    
    const int maxn = 1010 + 10;
    struct Edge
    {
        int from, to, cap, flow;
        Edge(int u, int v, int c, int f) :from(u), to(v), cap(c), flow(f){}
    };
    vector<Edge>edges;
    vector<int>G[maxn];
    bool vis[maxn];
    int d[maxn];
    int cur[maxn];
    int s, t;
    
    void init()
    {
        for (int i = 0; i < maxn; i++)
            G[i].clear();
        edges.clear();
    }
    void AddEdge(int from, int to, int cap)
    {
        edges.push_back(Edge(from, to, cap, 0));
        edges.push_back(Edge(to, from, 0, 0));
        int w = edges.size();
        G[from].push_back(w - 2);
        G[to].push_back(w - 1);
    }
    bool BFS()
    {
        memset(vis, 0, sizeof(vis));
        queue<int>Q;
        Q.push(s);
        d[s] = 0;
        vis[s] = 1;
        while (!Q.empty())
        {
            int x = Q.front();
            Q.pop();
            for (int i = 0; i<G[x].size(); i++)
            {
                Edge e = edges[G[x][i]];
                if (!vis[e.to] && e.cap>e.flow)
                {
                    vis[e.to] = 1;
                    d[e.to] = d[x] + 1;
                    Q.push(e.to);
                }
            }
        }
        return vis[t];
    }
    int DFS(int x, int a)
    {
        if (x == t || a == 0)
            return a;
        int flow = 0, f;
        for (int &i = cur[x]; i<G[x].size(); i++)
        {
            Edge e = edges[G[x][i]];
            if (d[x]+1 == d[e.to]&&(f=DFS(e.to,min(a,e.cap-e.flow)))>0)
            {
                edges[G[x][i]].flow+=f;
                edges[G[x][i] ^ 1].flow-=f;
                flow+=f;
                a-=f;
                if(a==0) break;
            }
        }
        if(!flow) d[x] = -1;
        return flow;
    }
    int dinic(int s, int t)
    {
        int flow = 0;
        while (BFS())
        {
            memset(cur, 0, sizeof(cur));
            flow += DFS(s, INF);
        }
        return flow;
    }
    
    int main()
    {
        while(~scanf("%d%d",&a,&b))
        {
            scanf("%d",&n);
            for(int i=1;i<=n;i++) scanf("%d%d",&T[i],&f[i]);
    
            init();
    
            for(int i=1;i<=n;i++)
            {
                if(f[i]==1) continue;
                for(int j=i+1;j<=n;j++)
                {
                    if(f[j]==0) continue;
                    if(T[j]-T[i]>=a||T[j]-T[i]<=b)
                    {
                        AddEdge(i,j,1);
                    }
                }
            }
    
            s=0,t=n+1;
    
            for(int i=1;i<=n;i++)
            {
                if(f[i]==0) AddEdge(s,i,1);
                else AddEdge(i,t,1);
            }
    
            int M = dinic(s,t);
    
            if(M<n/2)
            {
                printf("Liar
    ");
            }
            else
            {
                printf("No reason
    ");
                for(int i=0;i<edges.size();i++)
                {
                    if(edges[i].flow!=1) continue;
                    if(edges[i].from!=s&&edges[i].to!=t)
                        printf("%d %d
    ",T[edges[i].from],T[edges[i].to]);
                }
            }
    
        }
        return 0;
    }
  • 相关阅读:
    关于栈部分知识点
    面向对象--四则运算
    转型第一步
    输入输出文件版本——计算题
    作业二
    2017《面向对象程序设计》课程作业一
    第四次作业
    light oj 1079
    Light oj 1080
    Codeforces 486B OR in Matrix【水题】
  • 原文地址:https://www.cnblogs.com/zufezzt/p/6696281.html
Copyright © 2011-2022 走看看