zoukankan      html  css  js  c++  java
  • POJ2387(dijkstra堆优化)

    Til the Cows Come Home

    Bessie is out in the field and wants to get back to the barn to get as much sleep as possible before Farmer John wakes her for the morning milking. Bessie needs her beauty sleep, so she wants to get back as quickly as possible.

    Farmer John's field has N (2 <= N <= 1000) landmarks in it, uniquely numbered 1..N. Landmark 1 is the barn; the apple tree grove in which Bessie stands all day is landmark N. Cows travel in the field using T (1 <= T <= 2000) bidirectional cow-trails of various lengths between the landmarks. Bessie is not confident of her navigation ability, so she always stays on a trail from its start to its end once she starts it.

    Given the trails between the landmarks, determine the minimum distance Bessie must walk to get back to the barn. It is guaranteed that some such route exists.

    Input

    * Line 1: Two integers: T and N

    * Lines 2..T+1: Each line describes a trail as three space-separated integers. The first two integers are the landmarks between which the trail travels. The third integer is the length of the trail, range 1..100.

    Output

    * Line 1: A single integer, the minimum distance that Bessie must travel to get from landmark N to landmark 1.

    Sample Input

    5 5
    1 2 20
    2 3 30
    3 4 20
    4 5 20
    1 5 100

    Sample Output

    90
    //dijkstra
     1 #include<iostream>
     2 #include<stdio.h>
     3 #include<string.h>
     4 #include<algorithm>
     5 #include<cmath>
     6 #include<vector>
     7 #include<queue>
     8 #define maxn 1005
     9 #define ms(x,n) memset(x,n,sizeof x);
    10 const int inf=0x3f3f3f3f;
    11 using namespace std;
    12 int n,t;
    13 int u,v,w;
    14 int cost[1005][1005];
    15 int d[1005];
    16 bool vis[1005];
    17 void dij(int s)
    18 {
    19     int i,j;
    20     ms(vis,0);
    21     memset(d,0x3f,sizeof d);
    22     d[s]=0;
    23     for(i=1;i<=n;i++)
    24     {
    25         int p=inf,e=-1;
    26         for(j=1;j<=n;j++)
    27         {
    28             if(!vis[j]&&d[j]<p)
    29             {
    30                 p=d[j];
    31                 e=j;
    32             }
    33         }
    34         if(e==-1)return;
    35         vis[e]=1;
    36         for(j=1;j<=n;j++)
    37         {
    38             if(!vis[j]&&d[j]>cost[e][j]+d[e])
    39                 {d[j]=cost[e][j]+d[e];
    40                 }
    41         }
    42     }
    43 }
    44 int main()
    45 {
    46     int i,j;
    47     cin>>t>>n;
    48     for(i=1;i<=n;i++)
    49      for(j=1;j<=n;j++)
    50         if(i!=j)
    51         cost[i][j]=inf;
    52      else if(i==j)
    53         cost[i][j]=0;
    54     for(i=0;i<t;i++)
    55     {
    56         cin>>u>>v>>w;
    57         cost[u][v]=cost[v][u]=min(cost[u][v],w);
    58     }
    59      dij(1);
    60      cout<<d[n];
    61 }

    //dijkstra堆优化

     1 #include<iostream>
     2 #include<stdio.h>
     3 #include<string.h>
     4 #include<algorithm>
     5 #include<cmath>
     6 #include<vector>
     7 #include<queue>
     8 #define maxn 1005
     9 #define ms(x,n) memset(x,n,sizeof x);
    10 const int inf=0x3f3f3f3f;
    11 using namespace std;
    12 int n,t;
    13 int u,v,w;
    14 int cost[1005][1005];
    15 int d[1005];
    16 bool vis[1005];
    17 typedef pair<int,int> p;//cost[],点的编号
    18 vector<p>g[maxn];
    19 void dij(int s)
    20 {
    21     ms(vis,0);
    22     ms(d,0x3f);
    23     d[s]=0;
    24     priority_queue<p,vector<p>,greater<p> >q;
    25     q.push(p(d[s],s));
    26     while(!q.empty())
    27     {
    28         p cur=q.top();
    29         q.pop();
    30         u=cur.second;
    31         //if(cur.first<d[u])continue;
    32         int sz=g[u].size();
    33         for(int i=0;i<sz;i++)
    34         {
    35             v=g[u][i].second;
    36             w=g[u][i].first;
    37             if(d[v]>d[u]+w)
    38             {d[v]=d[u]+w;
    39             q.push(p(d[v],v));
    40             }
    41         }
    42     }
    43 }
    44 int main()
    45 {
    46     int i;
    47     cin>>t>>n;
    48     for(i=0;i<n;i++)
    49         g[i].clear();
    50     for(i=0;i<t;i++)
    51     {
    52         cin>>u>>v>>w;
    53         u--,v--;
    54         g[u].push_back(p(w,v));
    55         g[v].push_back(p(w,u));
    56     }
    57     dij(0);
    58     cout<<d[n-1];
    59 }

     //可以看出时空复杂度的明显差异

  • 相关阅读:
    联表查询更新
    SQLServer 中多行数据合并成一行数据(一个字段)
    换行和回车的区别
    SQL语句中使用回车换行符
    g2o使用总结
    求导总结
    ubuntu14.04 升级gcc
    如何入门SLAM
    imu和canmera标定
    使用velodyne16线激光雷达跑loam-velodyne------包括激光雷达和imu的标定
  • 原文地址:https://www.cnblogs.com/zuiaimiusi/p/10778864.html
Copyright © 2011-2022 走看看