zoukankan      html  css  js  c++  java
  • POJ2387(dijkstra堆优化)

    Til the Cows Come Home

    Bessie is out in the field and wants to get back to the barn to get as much sleep as possible before Farmer John wakes her for the morning milking. Bessie needs her beauty sleep, so she wants to get back as quickly as possible.

    Farmer John's field has N (2 <= N <= 1000) landmarks in it, uniquely numbered 1..N. Landmark 1 is the barn; the apple tree grove in which Bessie stands all day is landmark N. Cows travel in the field using T (1 <= T <= 2000) bidirectional cow-trails of various lengths between the landmarks. Bessie is not confident of her navigation ability, so she always stays on a trail from its start to its end once she starts it.

    Given the trails between the landmarks, determine the minimum distance Bessie must walk to get back to the barn. It is guaranteed that some such route exists.

    Input

    * Line 1: Two integers: T and N

    * Lines 2..T+1: Each line describes a trail as three space-separated integers. The first two integers are the landmarks between which the trail travels. The third integer is the length of the trail, range 1..100.

    Output

    * Line 1: A single integer, the minimum distance that Bessie must travel to get from landmark N to landmark 1.

    Sample Input

    5 5
    1 2 20
    2 3 30
    3 4 20
    4 5 20
    1 5 100

    Sample Output

    90
    //dijkstra
     1 #include<iostream>
     2 #include<stdio.h>
     3 #include<string.h>
     4 #include<algorithm>
     5 #include<cmath>
     6 #include<vector>
     7 #include<queue>
     8 #define maxn 1005
     9 #define ms(x,n) memset(x,n,sizeof x);
    10 const int inf=0x3f3f3f3f;
    11 using namespace std;
    12 int n,t;
    13 int u,v,w;
    14 int cost[1005][1005];
    15 int d[1005];
    16 bool vis[1005];
    17 void dij(int s)
    18 {
    19     int i,j;
    20     ms(vis,0);
    21     memset(d,0x3f,sizeof d);
    22     d[s]=0;
    23     for(i=1;i<=n;i++)
    24     {
    25         int p=inf,e=-1;
    26         for(j=1;j<=n;j++)
    27         {
    28             if(!vis[j]&&d[j]<p)
    29             {
    30                 p=d[j];
    31                 e=j;
    32             }
    33         }
    34         if(e==-1)return;
    35         vis[e]=1;
    36         for(j=1;j<=n;j++)
    37         {
    38             if(!vis[j]&&d[j]>cost[e][j]+d[e])
    39                 {d[j]=cost[e][j]+d[e];
    40                 }
    41         }
    42     }
    43 }
    44 int main()
    45 {
    46     int i,j;
    47     cin>>t>>n;
    48     for(i=1;i<=n;i++)
    49      for(j=1;j<=n;j++)
    50         if(i!=j)
    51         cost[i][j]=inf;
    52      else if(i==j)
    53         cost[i][j]=0;
    54     for(i=0;i<t;i++)
    55     {
    56         cin>>u>>v>>w;
    57         cost[u][v]=cost[v][u]=min(cost[u][v],w);
    58     }
    59      dij(1);
    60      cout<<d[n];
    61 }

    //dijkstra堆优化

     1 #include<iostream>
     2 #include<stdio.h>
     3 #include<string.h>
     4 #include<algorithm>
     5 #include<cmath>
     6 #include<vector>
     7 #include<queue>
     8 #define maxn 1005
     9 #define ms(x,n) memset(x,n,sizeof x);
    10 const int inf=0x3f3f3f3f;
    11 using namespace std;
    12 int n,t;
    13 int u,v,w;
    14 int cost[1005][1005];
    15 int d[1005];
    16 bool vis[1005];
    17 typedef pair<int,int> p;//cost[],点的编号
    18 vector<p>g[maxn];
    19 void dij(int s)
    20 {
    21     ms(vis,0);
    22     ms(d,0x3f);
    23     d[s]=0;
    24     priority_queue<p,vector<p>,greater<p> >q;
    25     q.push(p(d[s],s));
    26     while(!q.empty())
    27     {
    28         p cur=q.top();
    29         q.pop();
    30         u=cur.second;
    31         //if(cur.first<d[u])continue;
    32         int sz=g[u].size();
    33         for(int i=0;i<sz;i++)
    34         {
    35             v=g[u][i].second;
    36             w=g[u][i].first;
    37             if(d[v]>d[u]+w)
    38             {d[v]=d[u]+w;
    39             q.push(p(d[v],v));
    40             }
    41         }
    42     }
    43 }
    44 int main()
    45 {
    46     int i;
    47     cin>>t>>n;
    48     for(i=0;i<n;i++)
    49         g[i].clear();
    50     for(i=0;i<t;i++)
    51     {
    52         cin>>u>>v>>w;
    53         u--,v--;
    54         g[u].push_back(p(w,v));
    55         g[v].push_back(p(w,u));
    56     }
    57     dij(0);
    58     cout<<d[n-1];
    59 }

     //可以看出时空复杂度的明显差异

  • 相关阅读:
    JAXB基本使用
    Spring MVC手札
    Oracle创建表空间和表
    oracle删除表,让整个表从数据库中彻底消失
    oracle创建用户操作
    查看运行时某个java对象占用JVM大小及通过idea查看java的内存占用情况
    如何查看java进程
    win10下查看进程,杀死进程
    js计算两个时间相差天数
    windows 端口号占用和解决方法
  • 原文地址:https://www.cnblogs.com/zuiaimiusi/p/10778864.html
Copyright © 2011-2022 走看看