zoukankan      html  css  js  c++  java
  • [leetcode]Distinct Subsequences @ Python

    原题地址:https://oj.leetcode.com/problems/distinct-subsequences/

    题意:

    Given a string S and a string T, count the number of distinct subsequences of T in S.

    A subsequence of a string is a new string which is formed from the original string by deleting some (can be none) of the characters without disturbing the relative positions of the remaining characters. (ie, "ACE" is a subsequence of "ABCDE" while "AEC" is not).

    Here is an example:
    S = "rabbbit"T = "rabbit"

    Return 3.

    解题思路:这道题使用动态规划来解决。题的意思是:S的所有子串中,有多少子串是T。下面来看看状态转移方程。dp[i][j]表示S[0...i-1]中有多少子串是T[0...j-1]。

         当S[i-1]=T[j-1]时:dp[i][j]=dp[i-1][j-1]+dp[i-1][j];S[0...i-1]中有多少子串是T[0...j-1]包含:{S[0...i-2]中有多少子串是T[0...j-2]}+{S[0...i-2]中有多少子串是T[0...j-1]}

           当S[i-1]!=T[j-1]时:dp[i][j]=dp[i-1][j-1]

           那么初始化状态如何确定呢:dp[i][0]=1;S[0...i-1]只有一个子串是空串。

    代码:

    class Solution:
        # @return an integer
        # @dp
        # dp[i][j] means how many first j of T is sub of first i of S.
        def numDistinct(self, S, T):
            dp = [[0 for i in range(len(T)+1)] for j in range(len(S)+1)]
            for j in range(len(S)+1):
                dp[j][0] = 1
            for i in range(1, len(S)+1):
                for j in range(1, min(i+1, len(T)+1)):
                    if S[i-1] == T[j-1]:
                        dp[i][j] = dp[i-1][j] + dp[i-1][j-1]
                    else:
                        dp[i][j] = dp[i-1][j]
            return dp[len(S)][len(T)]
  • 相关阅读:
    如何判断retina,如何判断设备的比例
    说说移动前端中 viewport (视口)
    随机生成广告
    fullPage 全屏滚动【上下滚动】效果
    判断鼠标滚动方向
    低版本IE浏览器 input元素出现叉叉的情况
    关于IE7 默认有边框的解决方案
    embed 层级太高
    搜狐-新闻页 粗略整理-自我学习
    页面重构布局样式命名规则 —— 参考
  • 原文地址:https://www.cnblogs.com/zuoyuan/p/3767256.html
Copyright © 2011-2022 走看看