zoukankan      html  css  js  c++  java
  • spark streaming 4: DStreamGraph JobScheduler

    DStreamGraph有点像简洁版的DAG scheduler,负责根据某个时间间隔生成一序列JobSet,以及按照依赖关系序列化。这个类的inputStream和outputStream是最重要的属性。spark stream将动态的输入流与对流的处理通过一个shuffle来连接。前面的(shuffle map)是input stream,其实是DStream的子类,它们负责将收集的数据以block的方式存到spark memory中;而output stream,是另外的一系类DStream,负责将数据从spark memory读取出来,分解成spark core中的RDD,然后再做数据处理。





    final private[streaming] class DStreamGraph extends Serializable with Logging {

    private val inputStreams = new ArrayBuffer[InputDStream[_]]()
    private val outputStreams = new ArrayBuffer[DStream[_]]()

    var rememberDuration: Duration = null
    var checkpointInProgress = false

    var zeroTime: Time = null
    var startTime: Time = null
    var batchDuration: Duration = null


    def addInputStream(inputStream: InputDStream[_]) {
    this.synchronized {
    inputStream.setGraph(this)
    inputStreams += inputStream
    }
    }

    def addOutputStream(outputStream: DStream[_]) {
    this.synchronized {
    outputStream.setGraph(this)
    outputStreams += outputStream
    }
    }

    def getInputStreams() = this.synchronized { inputStreams.toArray }

    def getOutputStreams() = this.synchronized { outputStreams.toArray }

    def getReceiverInputStreams() = this.synchronized {
    inputStreams.filter(_.isInstanceOf[ReceiverInputDStream[_]])
    .map(_.asInstanceOf[ReceiverInputDStream[_]])
    .toArray
    }


    def generateJobs(time: Time): Seq[Job] = {
    logDebug("Generating jobs for time " + time)
    val jobs = this.synchronized {
    outputStreams.flatMap(outputStream => outputStream.generateJob(time))
    }
    logDebug("Generated " + jobs.length + " jobs for time " + time)
    jobs
    }


    @throws(classOf[IOException])
    private def writeObject(oos: ObjectOutputStream): Unit = Utils.tryOrIOException {
    logDebug("DStreamGraph.writeObject used")
    this.synchronized {
    checkpointInProgress = true
    logDebug("Enabled checkpoint mode")
    oos.defaultWriteObject()
    checkpointInProgress = false
    logDebug("Disabled checkpoint mode")
    }
    }

    @throws(classOf[IOException])
    private def readObject(ois: ObjectInputStream): Unit = Utils.tryOrIOException {
    logDebug("DStreamGraph.readObject used")
    this.synchronized {
    checkpointInProgress = true
    ois.defaultReadObject()
    checkpointInProgress = false
    }
    }

    JobScheduler负责产生jobs
    /**
    * This class schedules jobs to be run on Spark. It uses the JobGenerator to generate
    * the jobs and runs them using a thread pool.
    */
    private[streaming]
    class JobScheduler(val ssc: StreamingContext) extends Logging {

    private val jobSets = new ConcurrentHashMap[Time, JobSet]
    private val numConcurrentJobs = ssc.conf.getInt("spark.streaming.concurrentJobs", 1)
    private val jobExecutor = Executors.newFixedThreadPool(numConcurrentJobs)
    private val jobGenerator = new JobGenerator(this)
    val clock = jobGenerator.clock
    val listenerBus = new StreamingListenerBus()

    // These two are created only when scheduler starts.
    // eventActor not being null means the scheduler has been started and not stopped
    var receiverTracker: ReceiverTracker = null
    private var eventActor: ActorRef = null

    def start(): Unit = synchronized {
    if (eventActor != null) return // scheduler has already been started

    logDebug("Starting JobScheduler")
    eventActor = ssc.env.actorSystem.actorOf(Props(new Actor {
    def receive = {
    case event: JobSchedulerEvent => processEvent(event)
    }
    }), "JobScheduler")

    listenerBus.start()
    receiverTracker = new ReceiverTracker(ssc)
    receiverTracker.start()
    jobGenerator.start()
    logInfo("Started JobScheduler")
    }

    def submitJobSet(jobSet: JobSet) {
    if (jobSet.jobs.isEmpty) {
    logInfo("No jobs added for time " + jobSet.time)
    } else {
    jobSets.put(jobSet.time, jobSet)
    jobSet.jobs.foreach(job => jobExecutor.execute(new JobHandler(job)))
    logInfo("Added jobs for time " + jobSet.time)
    }
    }

    private class JobHandler(job: Job) extends Runnable {
    def run() {
    eventActor ! JobStarted(job)
    job.run()
    eventActor ! JobCompleted(job)
    }
    }
    job完成后处理
    private def handleJobCompletion(job: Job) {
    job.result match {
    case Success(_) =>
    val jobSet = jobSets.get(job.time)
    jobSet.handleJobCompletion(job)
    logInfo("Finished job " + job.id + " from job set of time " + jobSet.time)
    if (jobSet.hasCompleted) {
    jobSets.remove(jobSet.time)
    jobGenerator.onBatchCompletion(jobSet.time)
    logInfo("Total delay: %.3f s for time %s (execution: %.3f s)".format(
    jobSet.totalDelay / 1000.0, jobSet.time.toString,
    jobSet.processingDelay / 1000.0
    ))
    listenerBus.post(StreamingListenerBatchCompleted(jobSet.toBatchInfo))
    }
    case Failure(e) =>
    reportError("Error running job " + job, e)
    }
    }













  • 相关阅读:
    Windows Phone 7 日期选择控件DatePicker和时间选择控件TimePicker
    Windows Phone 7 开发小技巧
    Windows Phone 7 MVVM模式的学习笔记
    Windows Phone 7 网络编程之留言板应用
    C# 中的INotifyPropertyChanged和ObservableCollection<T>
    《深入浅出:Windows Phone 7应用开发》
    Windows Phone 7 MVVM模式通讯方式之实现Command
    Windows Phone 7 chart图表编程
    Windows Phone 7 网络编程之调用web service
    Perst嵌入式数据库介绍
  • 原文地址:https://www.cnblogs.com/zwCHAN/p/4274819.html
Copyright © 2011-2022 走看看