zoukankan      html  css  js  c++  java
  • BZOJ3453: tyvj 1858 XLkxc(拉格朗日插值)

    题意

    题目链接

    Sol

    把式子拆开,就是求这个东西

    [sum_{i = 0} ^n sum_{j = 1}^{a + id} sum_{x =1}^j x^k pmod P ]

    那么设(f(x) = sum_{i = 1}^n i^k),这是个经典的(k + 1)多项式,直接差值

    式子就可以化成

    [sum_{i = 0} ^n sum_{j = 1}^{a + id} f(j) pmod P ]

    (g(x) = sum_{i = 1}^n f(x))

    (g)差分之后实际上也就得到了(f(x)),根据多项式的定义,(g(x))是个(k+2)次多项式。

    同理我们要求的就是个(k+3)次多项式

    直接暴力插值就行了

    时间复杂度:(O(Tk^3))

    #include<bits/stdc++.h>
    #define int long long 
    using namespace std;
    const int mod = 1234567891, MAXN = 127;
    inline int read() {
        char c = getchar(); int x = 0, f = 1;
        while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
        while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
        return x * f;
    }
    int T, K, a, N, d, f[MAXN], g[MAXN], x[MAXN];
    int add(int x, int y) {
        if(x + y < 0) return x + y + mod;
        return x + y >= mod ? x + y - mod : x + y;
    }
    int add2(int &x, int y) {
        if(x + y < 0) x = (x + y + mod);
        else x = (x + y >= mod ? x + y - mod : x + y);
    }
    int mul(int x, int y) {
        return 1ll * x * y % mod;
    }
    int fp(int a, int p) {
        int base = 1;
        while(p) {
            if(p & 1) base = mul(base, a);
            a = mul(a, a); p >>= 1;
        }
        return base;
    }
    int Large(int *a, int k, int N) {
        for(int i = 0; i <= k; i++) x[i] = i;
        int ans = 0;
        for(int i = 0; i <= k; i++) {
            int up = a[i], down = 1;
            for(int j = 0; j <= k; j++) {
                if(i == j) continue;
                up = mul(up, add(N, -x[j]));
                down = mul(down, add(x[i], -x[j]));
            }
            add2(ans, mul(up, fp(down, mod - 2)));
        }
        return ans;
    }
    signed main() {
    #ifndef ONLINE_JUDGE
        //freopen("a.in", "r", stdin);freopen("a.out", "w", stdout);
    #endif
        T = read();
        while(T--) {
            K = read(), a = read(), N = read(), d = read();
            memset(f, 0, sizeof(f)); memset(g, 0, sizeof(g));
            /*
    		for(int i = 1; i <= K + 4; i++) f[i] = add(f[i - 1], fp(i, K));
            for(int i = 1; i <= K + 4; i++) g[i] = add(g[i - 1], Large(f, K + 4, a + i * d));//ֱ直接这样写是错的
           	for(int i = 1; i <= K + 4; i++) f[i] = add(f[i - 1], Large(g, K + 4, i)); 
            printf("%d
    ", Large(g, K + 4, N));
        	*/
        	for(int i = 1; i <= K + 4; i++) f[i] = add(f[i - 1], fp(i, K));
        	for(int i = 1; i <= K + 4; i++) f[i] = add(f[i], f[i - 1]);
        	for(int i = 0; i <= K + 4; i++) g[i] = add(i > 0 ? g[i - 1] : 0, Large(f, K + 4, add(a, mul(i, d))));
    		printf("%lld
    ", Large(g, K + 4, N));
    	}
        return 0;
    }
    /*
    5
    123 123456789 456879 132 
    1 1 1 1
    1 1 1 1
    1 1 1 1
    1 1 1 1
    */
    
    
  • 相关阅读:
    ch5 对链接应用样式
    ch4 圆角框
    ch4 背景图像基础
    ch8 CSS 3列(等高文本列)
    ch8 高度相等的列--CSS方法
    ch8 faux列
    java基础 (四)之集合
    java基础 (二)之HashMap,HashTable,ConcurrentHashMap区别
    java基础 (三)之ConcurrentHashMap(10)未完待续~~~
    java基础 (一)之HashMap(jdk1.7)
  • 原文地址:https://www.cnblogs.com/zwfymqz/p/10060254.html
Copyright © 2011-2022 走看看