zoukankan      html  css  js  c++  java
  • 洛谷P4783 【模板】矩阵求逆(高斯消元)

    题意

    题目链接

    Sol

    首先在原矩阵的右侧放一个单位矩阵

    对左侧的矩阵高斯消元

    右侧的矩阵即为逆矩阵

    // luogu-judger-enable-o2
    #include<bits/stdc++.h> 
    #define LL long long 
    using namespace std;
    const int MAXN = 2001, mod = 1e9 + 7;
    const double eps = 1e-9;
    inline int read() {
        char c = getchar(); int x = 0, f = 1;
        while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
        while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
        return x * f;
    }
    int N, a[MAXN][MAXN];
    int mul(int x, int y) {
        return 1ll * x * y % mod;
    }
    int fp(int a, int p) {
        int base = 1;
        while(p) {
            if(p & 1) base = mul(base, a);
            a = mul(a, a); p >>= 1;
        }
        return base;
    }
    int inv(int x) {
        return fp(x, mod - 2);
    }
    void add2(int &x, int y) {
        if(x + y < 0) x = x + y + mod;
        else x = (x + y >= mod) ? x + y - mod : x + y;
    }
    int MatrixInv() {
        for(int i = 1; i <= N; i++) 
            a[i][i + N] = 1;
        for(int i = 1; i <= N; i++) {
            int mx = i;
            for(int j = i + 1; j <= N; j++)
                if(a[j][i] > a[i][i]) mx = j;
            if(mx != i) swap(a[i], a[mx]);
            if(!a[i][i]) return -1; 
            int Inv = inv(a[i][i]);
            for(int j = i; j <= 2 * N; j++) a[i][j] = mul(a[i][j], Inv);
            for(int j = 1; j <= N; j++) {
                if(i != j) {
                    int r = a[j][i];
                    for(int k = i; k <= 2 * N; k++) 
                        add2(a[j][k], -mul(a[i][k], r));                
                }
            }
        }   
        return 0;
    }
    signed main() {
        //freopen("testdata.in", "r", stdin);
        N = read();
        for(int i = 1; i <= N; i++)
            for(int j = 1; j <= N; j++) 
                a[i][j] = read();
        if(MatrixInv() == -1) {puts("No Solution"); return 0;}
        for(int i = 1; i <= N; i++, puts(""))
            for(int j = N + 1; j <= 2 * N; j++)
                printf("%d ", a[i][j]);
        return 0;
    }
    /*
    1
    4 2 0 1 0
    50 50
    */
    
  • 相关阅读:
    501. Find Mode in Binary Search Tree
    [leetcode]Evaluate Reverse Polish Notation
    [leetcode]LRU Cache
    [mock]12月27日
    [mock]12月28日
    [leetcode]Max Points on a Line
    *[topcoder]JumpFurther
    [mock]12月11日
    *[topcoder]GUMIAndSongsDiv1
    [leetcode]Reorder List
  • 原文地址:https://www.cnblogs.com/zwfymqz/p/10209906.html
Copyright © 2011-2022 走看看