zoukankan      html  css  js  c++  java
  • 洛谷P2178 [NOI2015]品酒大会(后缀自动机 线段树)

    题意

    题目链接

    Sol

    说一个后缀自动机+线段树的无脑做法

    首先建出SAM,然后对parent树进行dp,维护最大次大值,最小次小值

    显然一个串能更新答案的区间是([len_{fa_{x}} + 1, len_x]),方案数就相当于是从(siz_x)里面选两个,也就是(frac{siz_x (siz_x - 1)}{2})

    直接拿线段树维护一下,标记永久化一下炒鸡好写~

    #include<bits/stdc++.h>
    #define int long long 
    #define LL long long 
    using namespace std;
    const int MAXN = 1e6 + 10;
    const LL INF = 2e18 + 10;
    template <typename A, typename B> inline bool chmin(A &a, B b){if(a > b) {a = b; return 1;} return 0;}
    template <typename A, typename B> inline bool chmax(A &a, B b){if(a < b) {a = b; return 1;} return 0;}
    inline int read() {
        char c = getchar(); int x = 0, f = 1;
        while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
        while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
        return x * f;
    }
    int N, a[MAXN];
    char s[MAXN];
    int root = 1, tot = 1, las = 1, ch[MAXN][26], fa[MAXN], len[MAXN], rev[MAXN];
    LL mx[MAXN], mx2[MAXN], ans[MAXN], ans1[MAXN], mn[MAXN], mn2[MAXN], tmp[MAXN], siz[MAXN];
    vector<int> v[MAXN];
    void insert(int x, int id) {
    	int now = ++tot, pre = las; las = now; siz[now] = 1; len[now] = len[pre] + 1; mx[now] = a[id]; mx2[now] = -INF; mn[now] = a[id]; mn2[now] = INF; rev[id] = now;
    	for(; pre && !ch[pre][x]; pre = fa[pre]) ch[pre][x] = now;
    	if(!pre) {fa[now] = root; return ;}
    	int q = ch[pre][x];
    	if(len[pre] + 1 == len[q]) fa[now] = q;
    	else {
    		int nq = ++tot; fa[nq] = fa[q]; len[nq] = len[pre] + 1; 
    		memcpy(ch[nq], ch[q], sizeof(ch[q]));
    		fa[now] = fa[q] = nq;
    		for(; pre && ch[pre][x] == q; pre = fa[pre]) ch[pre][x] = nq;
    	}
    }
    void BuildDAG() {
    	for(int i = 1; i <= tot; i++) assert(fa[i] != i), v[fa[i]].push_back(i);
    }
    
    int rt, Node, ls[MAXN], rs[MAXN], ad[MAXN], si[MAXN];
    LL sum[MAXN], tag[MAXN];
    void Build(int &k, int l, int r) {
    	if(!k) k = ++Node, tag[k] = -INF, si[k] = r - l + 1;
    	if(l == r) return ;
    	int mid = l + r >> 1;
    	Build(ls[k], l, mid);
    	Build(rs[k], mid + 1, r);
    }
    void IntMax(int k, int l, int r, int ql, int qr, LL v) {
    	if(ql <= l && r <= qr) {chmax(tag[k], v); return ;	}
    	int mid = l + r >> 1;
    	if(ql <= mid) IntMax(ls[k], l, mid, ql, qr, v);
    	if(qr  > mid) IntMax(rs[k], mid + 1, r, ql, qr, v);
    }
    void IntAdd(int k, int l, int r, int ql, int qr, LL v) {
    	if(ql <= l && r <= qr) {sum[k] += v; return ;}
    	int mid = l + r >> 1;
    	if(ql <= mid) IntAdd(ls[k], l, mid, ql, qr, v);
    	if(qr  > mid) IntAdd(rs[k], mid + 1, r, ql, qr, v);
    }
    LL QueryNum(int k, int l, int r, int pos) {
    	if(!k) return 0;
    	LL now = sum[k];
    	if(l == r || !k) return now;
    	int mid = l + r >> 1;
    	if(pos <= mid) now += QueryNum(ls[k], l, mid, pos);
    	else now += QueryNum(rs[k], mid + 1, r, pos);
    	return now;
    }
    LL QueryMax(int k, int l, int r, int pos) {
    	if(!k) return -INF;
    	LL now = tag[k];
    	if(l == r || !k) return now;
    	int mid = l + r >> 1;
    	if(pos <= mid) chmax(now, QueryMax(ls[k], l, mid, pos));
    	else chmax(now, QueryMax(rs[k], mid + 1, r, pos));
    	return now;
    }
    void dfs(int x) {
    	for(auto &to : v[x]) {
    		dfs(to);
    		siz[x] += siz[to];
    		if(mx2[to] > mx[x]) chmax(mx2[x], mx[x]), mx[x] = mx2[to];
    		else chmax(mx2[x], mx2[to]);
    		if(mx[to] > mx[x]) chmax(mx2[x], mx[x]), mx[x] = mx[to];
    		else chmax(mx2[x], mx[to]);
    		
    		if(mn2[to] < mn[x]) chmin(mn2[x], mn[x]), mn[x] = mn2[to];
    		else chmin(mn2[x], mn2[to]);
    		if(mn[to] < mn[x]) chmin(mn2[x], mn[x]), mn[x] = mn[to];
    		else chmin(mn2[x], mn[to]); 
    	}
    	if(siz[x] > 1 && x != root) {
    		IntMax(rt, 1, N, len[fa[x]] + 1, len[x], mx[x] * mx2[x]);
    		IntMax(rt, 1, N, len[fa[x]] + 1, len[x], mn[x] * mn2[x]);
    		
    		IntAdd(rt, 1, N, len[fa[x]] + 1, len[x], 1ll * siz[x] * (siz[x] - 1) / 2);
    	}
    }
    
    signed main() {
    	N = read();
    	Build(rt, 1, N);
    	scanf("%s", s + 1);
    	reverse(s + 1, s + N + 1);
    	for(int i = 1; i <= N; i++) tmp[i] = a[i] = read(), assert(a[i] != 0);
    	reverse(a + 1, a + N + 1);
    	for(int i = 1; i <= N; i++) insert(s[i] - 'a', i);
    	for(int i = 1; i <= tot; i++) {
    		ans[i] = -INF;
     		if(!mx[i]) mx[i] = -INF;
    		if(!mx2[i]) mx2[i] = -INF;
    		if(!mn[i]) mn[i] = INF;
    		if(!mn2[i]) mn2[i] = INF;	
    	}
    	BuildDAG();
     	dfs(1);
     	for(int i = 1; i < N; i++) {
    		ans1[i] = QueryNum(root, 1, N, i);
    		ans[i] = QueryMax(root, 1, N, i);
    		
    	}
    	sort(tmp + 1, tmp + N + 1, greater<int>());
    	cout << 1ll * N * (N - 1) / 2 << " " << max(tmp[1] * tmp[2], tmp[N] * tmp[N - 1]) << '
    ';
     	for(int i = 1; i < N; i++) cout << ans1[i] <<  " " << (ans[i] <= -INF ? 0 : ans[i]) << '
    ';
        return 0;
    }
    /*
    2
    aa
    -100000000 100000000
    12
    abaabaabaaba
    1 -2 3 -4 5 -6 7 -8 9 -10 11 -12
    */
    
  • 相关阅读:
    树莓派aria2 init文档
    树莓派aria2 init文档
    HDU 6000 Wash【优先队列优化贪心】【最大值+最小值】
    HDU 6000 Wash【优先队列优化贪心】【最大值+最小值】
    HDU 3264||POJ 3831 Open-air shopping malls【计算机几何】【圆相交面积模板】
    HDU 3264||POJ 3831 Open-air shopping malls【计算机几何】【圆相交面积模板】
    HDU 6178 Monkeys【dfs】【输入外挂模板】
    HDU 6178 Monkeys【dfs】【输入外挂模板】
    HDU 6181 Two Paths【次短路】【模板题】
    返回一个二维整数数组中最大子数组的和
  • 原文地址:https://www.cnblogs.com/zwfymqz/p/10393644.html
Copyright © 2011-2022 走看看