1.筛法求素数
1 #include<iostream> 2 #include<cstdio> 3 #include<cstring> 4 #include<cmath> 5 using namespace std; 6 const int MAXN=10001; 7 int vis[MAXN]; 8 int main() 9 { 10 int n; 11 scanf("%d",&n); 12 for(int i=2;i<=sqrt(n);i++) 13 { 14 if(vis[i]==0) 15 { 16 for(int j=i*i;j<=n;j=j+i) 17 { 18 vis[j]=1; 19 } 20 } 21 } 22 for(int i=2;i<=n;i++) 23 { 24 if(vis[i]==0) 25 printf("%d ",i); 26 } 27 return 0; 28 }
2.欧几里得求最大公约数及最小公倍数
1 #include<iostream> 2 #include<cstdio> 3 #include<cstring> 4 #include<cmath> 5 using namespace std; 6 int gcd(int x,int y) 7 { 8 if(y==0) 9 return x; 10 else 11 return gcd(y,x%y); 12 } 13 int main() 14 { 15 int x,y; 16 scanf("%d%d",&x,&y); 17 int gys=gcd(x,y); 18 printf("%d %d",gys,x*y/gys); 19 20 return 0; 21 }
3.扩展欧几里得 求同余方程ax ≡ 1 (mod b)
http://codevs.cn/problem/1200/
1 #include<iostream> 2 #include<cstdio> 3 #include<cmath> 4 using namespace std; 5 int x,y; 6 int exgcd(int a,int b,int &x,int &y) 7 { 8 if(b==0) 9 { 10 x=1; 11 y=0; 12 return a; 13 } 14 int r=exgcd(b,a%b,x,y); 15 int tmp=x; 16 x=y; 17 y=tmp-(a/b)*y; 18 return r; 19 } 20 int main() 21 { 22 int a,b; 23 scanf("%d%d",&a,&b); 24 exgcd(a,b,x,y); 25 while(x<0) 26 x=x+b; 27 printf("%d",x); 28 return 0; 29 }
3.扩展欧几里得 求线性同余方程ax ≡ c (mod b)
1 #include<iostream> 2 #include<cstdio> 3 #include<cmath> 4 using namespace std; 5 int x,y; 6 int gcd(int a,int b) 7 { 8 if(b==0) 9 return a; 10 else 11 return gcd(b,a%b); 12 } 13 int exgcd(int a,int b,int &x,int &y) 14 { 15 if(b==0) 16 { 17 x=1; 18 y=0; 19 return a; 20 } 21 int r=exgcd(b,a%b,x,y); 22 int tmp=x; 23 x=y; 24 y=tmp-(a/b)*y; 25 return r; 26 } 27 int main() 28 { 29 int a,b,c; 30 scanf("%d%d%d",&a,&b,&c); 31 int y=gcd(a,b); 32 if(c%y!=0) 33 { 34 printf("No Answer"); 35 return 0; 36 } 37 exgcd(a,b,x,y); 38 while(x<0) 39 { 40 x=x+b; 41 } 42 x=x*c; 43 printf("%d",x); 44 return 0; 45 }
4.求排列数
(1)基本排列
1 #include<iostream> 2 #include<cstdio> 3 #include<cstring> 4 using namespace std; 5 int f(int n) 6 { 7 if(n==0)return 1; 8 else return n*f(n-1); 9 } 10 int main() 11 { 12 int n,m; 13 scanf("%d%d",&n,&m); 14 printf("%d",f(n)/f(n-m)); 15 return 0; 16 }
(2)圆排列
1 #include<iostream> 2 #include<cstdio> 3 #include<cstring> 4 using namespace std; 5 int f(int n) 6 { 7 if(n==0)return 1; 8 else return n*f(n-1); 9 } 10 int main() 11 { 12 int n,m; 13 scanf("%d%d",&n,&m); 14 printf("%d",f(n)/(f(n-m)*m)); 15 return 0; 16 }
(3)全排列
1 #include<iostream> 2 #include<cstdio> 3 #include<cstring> 4 using namespace std; 5 int f(int n) 6 { 7 if(n==0)return 1; 8 else return n*f(n-1); 9 } 10 int main() 11 { 12 int n,m; 13 scanf("%d%d",&n,&m); 14 printf("%d",f(n)); 15 return 0; 16 }
(4)项链排列
1 #include<iostream> 2 #include<cstdio> 3 #include<cstring> 4 using namespace std; 5 int f(int n) 6 { 7 if(n==0)return 1; 8 else return n*f(n-1); 9 } 10 int main() 11 { 12 int n; 13 scanf("%d",&n); 14 if(n==1||n==2) 15 printf("1"); 16 else 17 printf("%d",f(n-1)/2); 18 return 0; 19 }
5.求组合数
1 #include<iostream> 2 #include<cstdio> 3 #include<cstring> 4 using namespace std; 5 int f(int n) 6 { 7 if(n==0)return 1; 8 else return n*f(n-1); 9 } 10 int main() 11 { 12 int n,m; 13 scanf("%d%d",&n,&m); 14 printf("%d",f(n)/(f(m)*(n-m))); 15 return 0; 16 }
6.快速幂
1 #include<iostream> 2 #include<cmath> 3 #include<cstdio> 4 using namespace std; 5 int fastpow(int a,int b) 6 { 7 int r=1; 8 int base=a; 9 while(b!=0) 10 { 11 if(b%2!=0) 12 r=r*base; 13 base=base*base; 14 b=b/2; 15 } 16 return r; 17 } 18 int main() 19 { 20 int a,b; 21 scanf("%d%d",&a,&b); 22 printf("%d",fastpow(a,b)); 23 return 0; 24 }
7.斐波那契数列
1 #include<iostream> 2 #include<cmath> 3 #include<cstdio> 4 using namespace std; 5 int main() 6 { 7 int n; 8 scanf("%d",&n); 9 double x=sqrt(5.0); 10 int ans=( pow ( ( ( 1+x ) / 2.0 ) , n ) / x - pow ( ( ( 1 - x ) / 2.0 ), n ) /x); 11 printf("%d",ans); 12 return 0; 13 }
1 #include<iostream> 2 #include<cmath> 3 #include<cstdio> 4 using namespace std; 5 int a[10001]; 6 int main() 7 { 8 int n; 9 a[1]=1; 10 a[2]=1; 11 scanf("%d",&n); 12 for(int i=3;i<=n;i++) 13 { 14 a[i]=a[i-1]+a[i-2]; 15 } 16 cout<<a[n]; 17 return 0; 18 }
1 #include<iostream> 2 #include<cmath> 3 #include<cstdio> 4 using namespace std; 5 int a[10001]; 6 int f(int n) 7 { 8 if(n==1||n==2)return 1; 9 else return f(n-1)+f(n-2); 10 } 11 int main() 12 { 13 int n; 14 a[1]=1; 15 a[2]=1; 16 scanf("%d",&n); 17 printf("%d",f(n)); 18 return 0; 19 }
8.求二元一次不定方程
1 #include<iostream> 2 #include<cstdio> 3 #include<cmath> 4 using namespace std; 5 int x,y; 6 int gcd(int a,int b) 7 { 8 if(b==0) 9 return a; 10 else 11 return gcd(b,a%b); 12 } 13 int exgcd(int a,int b,int &x,int &y) 14 { 15 if(b==0) 16 { 17 x=1; 18 y=0; 19 return a; 20 } 21 int r=exgcd(b,a%b,x,y); 22 int tmp=x; 23 x=y; 24 y=tmp-(a/b)*y; 25 return r; 26 } 27 int main() 28 { 29 int a,b,c; 30 scanf("%d%d%d",&a,&b,&c); 31 int y=gcd(a,b); 32 if(c%y!=0) 33 { 34 printf("No Answer"); 35 return 0; 36 } 37 exgcd(a,b,x,y); 38 while(x<0) 39 { 40 x=x+b; 41 y=y+b; 42 } 43 x=x*c; 44 printf("%d %d",x,y); 45 return 0; 46 }
9.欧拉定理
1 #include<iostream> 2 #include<cstdio> 3 #include<cmath> 4 #include<stack> 5 using namespace std; 6 stack<double>s; 7 int main() 8 { 9 int n; 10 scanf("%d",&n); 11 int ll=n; 12 for(int i=2;i<=n-1;i++) 13 { 14 if(ll%i==0) 15 { 16 s.push(i); 17 while(ll%i==0) 18 ll=ll/i; 19 } 20 } 21 double ans=n; 22 while(s.size()!=0) 23 { 24 double p=s.top(); 25 s.pop(); 26 ans=ans*(double)(1.0-1.0/p); 27 } 28 printf("%.3lf",ans); 29 return 0; 30 }
10.威尔逊定理判定素数
感觉把这个定理玩坏了。。因为它只能判断n<=35......。。。。比暴力都弱。。。。。
1 #include<iostream> 2 #include<cstring> 3 #include<cstdio> 4 #include<cmath> 5 using namespace std; 6 long long int f(int p) 7 { 8 if(p==0) 9 return 1; 10 else return p*f(p-1); 11 } 12 int main() 13 { 14 int n; 15 scanf("%d",&n); 16 long long int ans=f(n-1); 17 if(ans%n==n-1) 18 printf("YES"); 19 else 20 printf("NO"); 21 return 0; 22 }
11.Catalan数
1 #include<iostream> 2 using namespace std; 3 long long int f[1001]; 4 int main() 5 { 6 int n; 7 f[2]=1; 8 f[3]=1; 9 cin>>n; 10 n=n+2; 11 for(int i=4;i<=n;i++) 12 { 13 for(int j=2;j<=n-1;j++) 14 { 15 f[i]=f[j]*f[i-j+1]+f[i]; 16 } 17 } 18 cout<<f[n]; 19 return 0; 20 }
12.Stirling斯特林数
(1)第一类(旧noi放苹果问题)
1 #include<cstdio> 2 #include<cstring> 3 #include<iostream> 4 #include<algorithm> 5 using namespace std; 6 int t; 7 int n; 8 int m; 9 int tot=0; 10 int f(int a,int b) 11 { 12 if(a<=1||b<=1) 13 return 1; 14 if(a<b) 15 return f(a,a); 16 else 17 return f(a,b-1)+f(a-b,b); 18 } 19 int main() 20 { 21 22 cin>>t; 23 for(int i=1;i<=t;i++) 24 { 25 cin>>m>>n; 26 cout<<f(m,n)<<endl; 27 } 28 return 0; 29 }
(2)第二类
1 #include<cstdio> 2 #include<cstring> 3 #include<iostream> 4 #include<algorithm> 5 using namespace std; 6 int t; 7 int n; 8 int m; 9 int tot=0; 10 int f(int a,int b) 11 { 12 if(a<=1||b<=1) 13 return 1; 14 if(a<b) 15 return f(a,a); 16 else 17 return f(a-1,b-1)+f(a-1,b)*b; 18 } 19 int main() 20 { 21 22 cin>>t; 23 for(int i=1;i<=t;i++) 24 { 25 cin>>m>>n; 26 cout<<f(m,n)<<endl; 27 } 28 return 0; 29 }
13.判断素数的常用方法
(1)暴力:
1 #include<iostream> 2 #include<cstdio> 3 #include<cmath> 4 using namespace std; 5 const int MAXN=10000001; 6 int vis[MAXN]; 7 int bc[MAXN]; 8 int now=1; 9 int pd(int n) 10 { 11 for(int i=2;i<=sqrt(n);i++) 12 { 13 if(n%i==0) 14 return 0; 15 } 16 return 1; 17 } 18 int main() 19 { 20 int m,n; 21 scanf("%d",&n); 22 if(pd(n)==1) 23 { 24 printf("YES"); 25 } 26 else 27 { 28 printf("NO"); 29 } 30 return 0; 31 }
(2)线性筛法
1 #include<iostream> 2 #include<cstdio> 3 #include<cmath> 4 using namespace std; 5 const int MAXN=100000001; 6 int vis[MAXN]; 7 int main() 8 { 9 int n; 10 scanf("%d",&n); 11 for(int i=2;i<=sqrt(n);i++) 12 { 13 if(vis[i]==0) 14 { 15 for(int j=i*i;j<=n;j=j+i) 16 { 17 vis[j]=1; 18 } 19 } 20 } 21 if(vis[n]==0) 22 { 23 printf("Yes"); 24 } 25 else 26 { 27 printf("No"); 28 } 29 return 0; 30 }
(3)费马小定理(高能算法)
1 #include<iostream> 2 #include<cstdio> 3 #include<cstring> 4 #include<cstdlib> 5 #include<ctime> 6 #define ll long long int 7 using namespace std; 8 ll n; 9 ll pd[14]={10,35,77,535,71497,2,3,5,7,11,3161}; 10 ll fastmul(ll a,ll b) 11 { 12 ll r=0; 13 ll base=a; 14 while(b!=0) 15 { 16 if(b%2!=0) 17 { 18 b--; 19 r=(r+base)%n; 20 } 21 b=b/2; 22 base=(base+base)%n; 23 } 24 return r%n; 25 } 26 ll fastpow(ll a,ll b) 27 { 28 ll r=1; 29 ll base=a; 30 while(b!=0) 31 { 32 if(b%2!=0) 33 r=fastmul(r,base)%n; 34 base=fastmul(base,base)%n; 35 b=b/2; 36 } 37 return r%n; 38 } 39 ll check(ll n) 40 { 41 if(n==2) 42 { 43 return 1; 44 } 45 if(n<2&&(n%2==0)) 46 { 47 return 0; 48 } 49 for(ll i=0;i<11;i++) 50 { 51 ll x=pd[i]; 52 if(x%n==0) 53 continue; 54 ll ans=fastpow(x,n-1)%n; 55 if(ans!=1) 56 return 0; 57 } 58 return 1; 59 } 60 int main() 61 { 62 //srand(time(0)); 63 //scanf("%lld",&n); 64 cin>>n; 65 for(int i=1;i<=n;i++) 66 { 67 if(check(i)) 68 { 69 printf("%d ",i); 70 } 71 } 72 73 return 0; 74 }
(4)威尔逊定理判定素数(基本可以无视)
1 #include<iostream> 2 #include<cstring> 3 #include<cstdio> 4 #include<cmath> 5 using namespace std; 6 long long int f(int p) 7 { 8 if(p==0) 9 return 1; 10 else return p*f(p-1); 11 } 12 int main() 13 { 14 int n; 15 scanf("%d",&n); 16 long long int ans=f(n-1); 17 if(ans%n==n-1) 18 printf("YES"); 19 else 20 printf("NO"); 21 return 0; 22 } 23 24 威尔逊定理(判定素数)
14.筛法求欧拉函数([SDOI2008]仪仗队)
1 #include<iostream> 2 #include<cstdio> 3 #include<cstring> 4 #include<cmath> 5 using namespace std; 6 const int MAXN=100001; 7 int euler[MAXN]; 8 int ans=1; 9 int main() 10 { 11 int n; 12 scanf("%d",&n); 13 n--; 14 euler[1]=1; 15 for(int i=2;i<=n;i++) 16 euler[i]=i; 17 for(int i=2;i<=n;i++) 18 { 19 if(euler[i]==i) 20 for(int j=i;j<=n;j+=i) 21 euler[j]=euler[j]/i*(i-1); 22 ans+=euler[i]; 23 } 24 printf("%d",ans*2+1); 25 return 0; 26 }