zoukankan      html  css  js  c++  java
  • Common Subsequence

    Time Limit: 1000MS   Memory Limit: 10000K
    Total Submissions: 53247   Accepted: 22084

    Description

    A subsequence of a given sequence is the given sequence with some elements (possible none) left out. Given a sequence X = < x1, x2, ..., xm > another sequence Z = < z1, z2, ..., zk > is a subsequence of X if there exists a strictly increasing sequence < i1, i2, ..., ik > of indices of X such that for all j = 1,2,...,k, xij = zj. For example, Z = < a, b, f, c > is a subsequence of X = < a, b, c, f, b, c > with index sequence < 1, 2, 4, 6 >. Given two sequences X and Y the problem is to find the length of the maximum-length common subsequence of X and Y.

    Input

    The program input is from the std input. Each data set in the input contains two strings representing the given sequences. The sequences are separated by any number of white spaces. The input data are correct.

    Output

    For each set of data the program prints on the standard output the length of the maximum-length common subsequence from the beginning of a separate line.

    Sample Input

    abcfbc         abfcab
    programming    contest 
    abcd           mnp

    Sample Output

    4
    2
    0

    Source

     
    用dp[n][m]表示第一个喘选到n,第二个串选到m
     
     1 #include<iostream>
     2 #include<cstdio>
     3 #include<cstring>
     4 #include<cmath>
     5 #include<algorithm>
     6 using namespace std;
     7 const int MAXN=601;
     8 const int maxn=0x7fffff;
     9 char a[MAXN];
    10 char b[MAXN];
    11 int dp[MAXN][MAXN];
    12 int la,lb;
    13 int main()
    14 {
    15     while(~scanf("%s%s",a,b))
    16     {
    17         la=strlen(a);
    18         lb=strlen(b);
    19         memset(dp,0,sizeof(dp));
    20         //dp[0][0]=1;
    21         for(int i=1;i<=la;i++)
    22         {
    23             for(int j=1;j<=lb;j++)
    24             {
    25                 
    26                 if(a[i-1]==b[j-1])
    27                     dp[i][j]=max(dp[i][j],dp[i-1][j-1]+1);
    28                 else dp[i][j]=max(dp[i-1][j],dp[i][j-1]);
    29             }
    30         }
    31         printf("%d
    ",dp[la][lb]);
    32     }
    33     return 0;
    34 }
  • 相关阅读:
    学习asp.net比较完整的流程
    时间的获取和转换,C#和Sql
    学习一种新编程语言要做的10几个练习
    分布式网络管理优点总结
    点对点网络大解析
    如何阅读他人的程序代码
    WebConfig
    正则表达式30分钟入门教程
    程序员遇到BUG的解释
    在T-SQL语句中访问远程数据库(openrowset/opendatasource/openquery)
  • 原文地址:https://www.cnblogs.com/zwfymqz/p/7202106.html
Copyright © 2011-2022 走看看