zoukankan      html  css  js  c++  java
  • Common Subsequence

    Time Limit: 1000MS   Memory Limit: 10000K
    Total Submissions: 53247   Accepted: 22084

    Description

    A subsequence of a given sequence is the given sequence with some elements (possible none) left out. Given a sequence X = < x1, x2, ..., xm > another sequence Z = < z1, z2, ..., zk > is a subsequence of X if there exists a strictly increasing sequence < i1, i2, ..., ik > of indices of X such that for all j = 1,2,...,k, xij = zj. For example, Z = < a, b, f, c > is a subsequence of X = < a, b, c, f, b, c > with index sequence < 1, 2, 4, 6 >. Given two sequences X and Y the problem is to find the length of the maximum-length common subsequence of X and Y.

    Input

    The program input is from the std input. Each data set in the input contains two strings representing the given sequences. The sequences are separated by any number of white spaces. The input data are correct.

    Output

    For each set of data the program prints on the standard output the length of the maximum-length common subsequence from the beginning of a separate line.

    Sample Input

    abcfbc         abfcab
    programming    contest 
    abcd           mnp

    Sample Output

    4
    2
    0

    Source

     
    用dp[n][m]表示第一个喘选到n,第二个串选到m
     
     1 #include<iostream>
     2 #include<cstdio>
     3 #include<cstring>
     4 #include<cmath>
     5 #include<algorithm>
     6 using namespace std;
     7 const int MAXN=601;
     8 const int maxn=0x7fffff;
     9 char a[MAXN];
    10 char b[MAXN];
    11 int dp[MAXN][MAXN];
    12 int la,lb;
    13 int main()
    14 {
    15     while(~scanf("%s%s",a,b))
    16     {
    17         la=strlen(a);
    18         lb=strlen(b);
    19         memset(dp,0,sizeof(dp));
    20         //dp[0][0]=1;
    21         for(int i=1;i<=la;i++)
    22         {
    23             for(int j=1;j<=lb;j++)
    24             {
    25                 
    26                 if(a[i-1]==b[j-1])
    27                     dp[i][j]=max(dp[i][j],dp[i-1][j-1]+1);
    28                 else dp[i][j]=max(dp[i-1][j],dp[i][j-1]);
    29             }
    30         }
    31         printf("%d
    ",dp[la][lb]);
    32     }
    33     return 0;
    34 }
  • 相关阅读:
    与客服聊天功能测试点
    京东优惠券如何测试
    Linux笔试题
    线程与线程池原理
    PyCharm 介绍、安装、入门使用
    银行APP测试用户体验性方面
    python的闭包
    列表解析2
    深入函数
    再谈装饰器@@@
  • 原文地址:https://www.cnblogs.com/zwfymqz/p/7202106.html
Copyright © 2011-2022 走看看