zoukankan      html  css  js  c++  java
  • BZOJ4805: 欧拉函数求和(杜教筛)

    4805: 欧拉函数求和

    Time Limit: 15 Sec  Memory Limit: 256 MB
    Submit: 614  Solved: 342
    [Submit][Status][Discuss]

    Description

    给出一个数字N,求sigma(phi(i)),1<=i<=N

    Input

    正整数N。N<=2*10^9

    Output

    输出答案。
     

    Sample Input

    10

    Sample Output

    32

    HINT

     

    Source

     
    直接大力杜教筛
    $sum_{i=1}^{n}varphi(i) = frac{n imes(n+1)}{2} - sum_{d=2}^{n}sum_{i=1}^{lfloorfrac{n}{d} floor}varphi(i)$

     
    #include<cstdio>
    #include<map>
    #include<ext/pb_ds/assoc_container.hpp>
    #include<ext/pb_ds/hash_policy.hpp>
    #define LL long long 
    using namespace std;
    using namespace __gnu_pbds;
    const int MAXN=5000030;
    int N,limit=5000000,tot=0,vis[MAXN],prime[MAXN];
    LL phi[MAXN];
    gp_hash_table<int,LL>Aphi;
    void GetPhi()
    {
        vis[1]=1;phi[1]=1;
        for(int i=1;i<=limit;i++)
        {
            if(!vis[i]) prime[++tot]=i,phi[i]=i-1;
            for(int j=1;j<=tot&&i*prime[j]<=limit;j++)
            {
                vis[i*prime[j]]=1;
                if(i%prime[j]==0) {phi[i*prime[j]]=phi[i]*prime[j];break;}
                else phi[i*prime[j]]=phi[i]*(prime[j]-1);
            }
        }
        for(int i=1;i<=limit;i++) phi[i]+=phi[i-1];
    }
    LL SolvePhi(LL n)
    {
        if(n<=limit) return phi[n];
        if(Aphi[n]) return Aphi[n];
        LL tmp=n*(n+1)/2;
        for(int i=2,nxt;i<=n;i=nxt+1)
        {
            nxt=min(n,n/(n/i));
            tmp-=SolvePhi(n/i)*(LL)(nxt-i+1);
        }
        return Aphi[n]=tmp;
    }
    int main()
    {
        GetPhi();
        scanf("%lld",&N);
        printf("%lld",SolvePhi(N));
        return 0;
    }
  • 相关阅读:
    CodeForces
    CodeForces
    FZU
    FZU
    UESTC
    测试用例概述
    软件测试流程
    软件测试(二)软件测试过程
    软件测试(一)软件的生命周期(SDLC,Systems Development Life Cycle,SDLC)
    系统测试的策略
  • 原文地址:https://www.cnblogs.com/zwfymqz/p/8542184.html
Copyright © 2011-2022 走看看