zoukankan      html  css  js  c++  java
  • Educational Codeforces Round 45 (Rated for Div. 2)

    A Commentary Boxes

    算出$N pmod M$

    然后分别讨论是加还是减

    #include<cstdio>
    #include<algorithm>
    #include<map>
    #include<vector>
    #define int long long 
    using namespace std;
    inline int read() {
        char c = getchar(); int x = 0, f = 1;
        while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
        while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
        return x * f;
    }
    int N, M, A, B;
    main() {
        N = read(); M = read(); A = read(), B = read();
        int res = N % M;
        printf("%lld", min((M - res) * A, res * B));
    }
    A

    B Micro-World

    排序之后用一个栈维护当前的病毒

    然后不断吞就好了

    #include<cstdio>
    #include<algorithm>
    #include<map>
    #include<vector>
    #define int long long 
    using namespace std;
    const int MAXN = 1e6 + 10;
    inline int read() {
        char c = getchar(); int x = 0, f = 1;
        while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
        while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
        return x * f;
    }
    int N, K;
    int a[MAXN], s[MAXN], top = 0;
    main() {
        N = read(); K = read();
        for(int i = 1; i <= N; i++) a[i] = read();
        sort(a + 1, a + N + 1);
        int ans = 0;
        s[++top] = a[1];
        for(int i = 2; i <= N; i++) {
            while(top > 0 && (a[i] > s[top]) && (a[i] <= s[top] + K)) 
                ans++, top--;
            s[++top] = a[i];
        }
        printf("%d", N - ans);
    }
    B

    C Bracket Sequences Concatenation Problem

    类似$)($的肯定是不管与谁都无法匹配

    $(($这样的只能匹配$))$,反过来同理

    $()$这样合法的于合法的都能匹配

    然后记录一下乘法原理统计答案

    #include<cstdio>
    #include<algorithm>
    #include<map>
    #include<vector>
    #include<cstring>
    #define LL long long 
    using namespace std;
    const int MAXN = 3e5 + 10;
    int N, M, A, B;
    int s[MAXN];
    LL top = 0, L[MAXN], R[MAXN], can, limit = 0;
    char ss[MAXN];
    main() {
        //freopen("a.in", "r", stdin);
        //freopen("c.out", "w", stdout);
        int N;
        scanf("%d", &N);
        for(int i = 1; i <= N; i++) {
            scanf("%s", ss + 1);
            top = 0;
            int Len = strlen(ss + 1);
            bool flag = 0;
            for(int j = 1; j <= Len; j++)    {
                if(ss[j] == '(') s[++top] = 1;
                if(ss[j] == ')') {
                    if(top > 0 && s[top] == 1) top--;
                    else s[++top] = 2;
                }
            }
            for(int j = 2; j <= top; j++)
                if(s[j] != s[j - 1])
                    {flag = 1; break;}
            if(flag == 1) continue;
            limit = max(limit, top);
            if(top == 0) {L[0]++; R[0]++; continue;}
            if(s[top] == 2) R[top]++;
            if(s[top] == 1) L[top]++;
        }
        LL ans = 0;
        for(int i = 0; i <= limit; i++)
            ans += 1ll * L[i] * R[i];
        printf("%lld
    ", ans);
        
        
    }
    C

    D Graph And Its Complement

    第一次遇到构造题

    首先当$a,b$同时不唯一的时候一定是无解的,

    证明:假设原图的联通块数不为$1$,那么原图中不同联通块之间的点在反图中一定有边,

    这样原图中的不同联通块之间的点可以通过新边到达其他联通块,

    然后再通过其他联通块的新边回到原来的联通块

    这样我们假设$a=1$(若不满足可以交换)

    设$b=x$

    首先我们把原图中的边全都连上,然后在原图中任意$N-x$对点的边断开就好

    注意要特判$N=2$和$N=3$的情况

    #include<cstdio>
    #include<algorithm>
    #include<map>
    #include<vector>
    #define LL long long 
    using namespace std;
    const LL MAXN = 1001, INF = 1e18 + 10;
    inline int read() {
        char c = getchar(); int x = 0, f = 1;
        while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
        while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
        return x * f;
    }
    char ans[MAXN][MAXN];
    main() {
        int N = read(), A = read(), B = read();
        if(A != 1 && B != 1) { printf("NO"); return 0;}
        char a = '1', b = '0'; 
        if(A != 1) swap(a, b), swap(A, B);
        if((N == 2 || N == 3) && B == 1) { printf("NO"); return 0;}
        printf("YES
    ");
        for(int i = 1; i <= N; i++)
            for(int j = 1; j <= N; j++)
                if(i != j) ans[i][j] = a;
                else ans[i][j] = '0';
        for(int i = 1; i <= (N - B); i++) 
            ans[i][i + 1] = b, 
            ans[i + 1][i] = b;
        for(int i = 1; i <= N; i++, puts(""))
            for(int j = 1; j <= N; j++)
                putchar(ans[i][j]);
    }
    D

    E Post Lamps

    预处理障碍,

    直接暴力枚举选哪个

    时间复杂度为调和级数$O(klogn)$

    #include<cstdio>
    #include<algorithm>
    #include<map>
    #include<vector>
    #define LL long long 
    using namespace std;
    const LL MAXN = 1e6 + 10, INF = 1e18 + 10;
    inline int read() {
        char c = getchar(); int x = 0, f = 1;
        while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
        while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
        return x * f;
    }
    int N, M, K;
    int block[MAXN], sum[MAXN], a[MAXN], cnt[MAXN];
    main() {
        N = read(); M = read(); K = read();
        for(int i = 1; i <= M; i++) block[read()] = 1;
        if(block[0]) {printf("-1"); return 0;}
        for(int i = 1; i <= K; i++) a[i] = read();
        int mx = 0;
        for(int i = 1, j; i <= 1e6; i = j + 1) {
            j = i; int num = 0;
            while(block[j]) mx = max(cnt[j] = ++num, mx), j++;
        }
        LL out = INF;
        for(int i = mx + 1; i <= K; i++) {
            LL now = 0, spend = 0;
            while(now < N) {
                if(block[now]) now = now - cnt[now];
                else now = now + i, spend = spend + a[i];
            }
            out = min(out, spend);
        }
        printf("%lld", out == INF ? -1 : out);
    }
    E

    总结

    第一次打cf,确实有很多不适应的地方,第一题上来把$n$和$m$看反了,然后特判的时候写的是$M % N$,直接wa到飞

    T2秒的比较快

    T3也秒的比较快,不过写代码的时候把$)($判成了$()$,又wa成傻逼。

    T4没看,不过zbq秒了(不过他考场上没判$n=3$..),然后赛后做了做

    T5最后几分钟看了看,当时感觉比较可做,但是思路一直纠结在如何处理障碍上,我一直以为障碍的范围是$10^9$然后纠结要不要开map

    怎么说呢,感觉自己最近真的太浮躁了,很多时候连范围都没看清楚就开始做。

    希望自己往后打cf的时候能沉下心来一句一句的读题目吧。

  • 相关阅读:
    采用get方式提交数据到服务器实例
    android之HttpURLConnection
    Android中的传感器
    有符号类型无符号类型转换
    一些常用位运算示例
    C++ / CLI 调用 C++ /Native 随记
    Linux Shell Demo
    Linux Shell 脚本入门
    Linux 编译 websocket++
    Linux 编写c++程序之openssl
  • 原文地址:https://www.cnblogs.com/zwfymqz/p/9165354.html
Copyright © 2011-2022 走看看