zoukankan      html  css  js  c++  java
  • POJ2154 Color(Polya定理)

    Time Limit: 2000MS   Memory Limit: 65536K
    Total Submissions: 11654   Accepted: 3756

    Description

    Beads of N colors are connected together into a circular necklace of N beads (N<=1000000000). Your job is to calculate how many different kinds of the necklace can be produced. You should know that the necklace might not use up all the N colors, and the repetitions that are produced by rotation around the center of the circular necklace are all neglected. 

    You only need to output the answer module a given number P. 

    Input

    The first line of the input is an integer X (X <= 3500) representing the number of test cases. The following X lines each contains two numbers N and P (1 <= N <= 1000000000, 1 <= P <= 30000), representing a test case.

    Output

    For each test case, output one line containing the answer.

    Sample Input

    5
    1 30000
    2 30000
    3 30000
    4 30000
    5 30000
    

    Sample Output

    1
    3
    11
    70
    629
    

    Source

    POJ Monthly,Lou Tiancheng

    Polya定理:

    假设$G$是$p$个对象的一个置换群,用$m$种颜色涂染$p$个对象,则不同颜色的方案数为

    $L = frac{1}{|G|}sum_{g_i in G}m^{c(g_i)}$

    $G = {g_1, g_2, dots g_s }$,$c(g_i)$为置换$g_i$的循环节数

    本题而言第$i$种置换的循环节数为$gcd(n, i)$

    因此答案为$L = frac{1}{n}sum_{i = 1}^n n^{gcd(i, n}$

    枚举约数,用欧拉函数计算,时间复杂度$O(Tsqrt(N) f(n))$,$f(n)$表示小于$sqrt(n)$的质因子的个数

    #include<cstdio>
    #include<algorithm>
    #include<cmath>
    #include<map>
    #define LL long long  
    const int MAXN = 1e5 + 10;
    inline int read() {
        char c = getchar(); int x = 0, f = 1;
        while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
        while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
        return x * f;
    }
    int T, N, mod;
    int fastpow(int a, int p, int mod) {
        int base = 1; a %= mod;
        while(p) {
            if(p & 1) base = (base * a) % mod;
            a = (a * a) % mod; p >>= 1;
        }
        return base % mod;
    }
    int prime[MAXN], tot, vis[MAXN];
    void Prime() {
        for(int i = 2; i <= MAXN - 10; i++) {
            if(!vis[i]) prime[++tot] = i;
            for(int j = 1; j <= tot && prime[j] * i <= MAXN - 10; j++) {
                vis[i * prime[j]] = 1;
                if(!i % prime[j]) break;
            }
        }
    }
    int phi(int x, int mod) {
        int limit , ans = x;
        for(int i = 1; i <= tot && prime[i] * prime[i] <= x; i++) {
            if(!(x % prime[i])) {
                ans = ans - ans / prime[i];
                while((x % prime[i]) == 0) x /= prime[i];
            }
        }
        if(x > 1) ans = ans - ans / x;  
    //    printf("%d", ans % mod);
        return ans % mod;
    }
    main() {
        T = read();
        Prime();
        while(T--) {
            N = read(); mod = read(); 
            int ans = 0, now = N;
            for(int d = 1; d * d<= N; d++) {
                if(d * d == N)    
                    ans = (ans + fastpow(N, d - 1, mod) % mod * phi(N / d, mod) % mod) % mod;
                else if( (N % d) == 0) {
                    ans = (ans + fastpow(N, d - 1, mod) * phi(N / d, mod) + fastpow(N, N / d - 1, mod) * phi(d, mod)) % mod;
                }
                    
                //printf("%d
    ", ans);
            }
            //if(now > 0) ans += fastpow(N, now - 1, mod) * phi(N / now, mod);
            printf("%d
    ", ans % mod);
        }
    }
  • 相关阅读:
    Javascript闭包的一些研究
    pytorchvision安装问题
    CUDA 基础
    语音识别入门推荐文献【转】
    【e2e】espnet框架安装问题集锦
    维特比算法与beam search
    kaldi识别问题集锦
    语音识别-重要开源数据
    git提交失败总结
    钟南山病后反思: 寿命长短, 不取决于衰老和疾病【转】
  • 原文地址:https://www.cnblogs.com/zwfymqz/p/9293465.html
Copyright © 2011-2022 走看看