zoukankan      html  css  js  c++  java
  • 洛谷P4013 数字梯形问题(费用流)

    题意

    $N$行的矩阵,第一行有$M$个元素,第$i$行有$M + i - 1$个元素

    问在三个规则下怎么取使得权值最大

    Sol

    我只会第一问qwq。。

    因为有数量的限制,考虑拆点建图,把每个点拆为$a_1$和$b_1$,两点之间连流量为$1$,费用为权值的边

    从$b_i$向下方和右下的$a_1$连一条流量为$1$,费用为$0$边

    从$S$向第一层的$a_1$连流量为$1$,费用为$0$的边,从$b_N$到$T$连流量为$1$,费用为$0$的边

    对于第二问,因为没有点的个数的限制,那么就不用拆点了,直接向能到达的点连流量为$1$,费用为点权的边

    对于第三问,直接把第二问中的所有边为流量设为$INF$(除了从$S$出发的)

    #include<cstdio>
    #include<algorithm>
    #include<cstring>
    #include<queue>
    using namespace std;
    const int MAXN = 1e5 + 10, INF = 1e9 + 10;
    inline int read() {
        char c = getchar(); int x = 0, f = 1;
        while(c < '0' || c > '9') {if(c == '-') f = 1; c = getchar();}
        while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
        return x * f;
    }
    int N, M, S = 0, T = 1e5 + 1;
    int a[21][21];
    struct Edge {
        int u, v, w, f, nxt;
    }E[MAXN];
    int head[MAXN << 1], num = 0;
    inline void add_edge(int x, int y, int w, int f) {
    
        E[num] = (Edge){x, y, w, f, head[x]};
        head[x] = num++;    
    }
    inline void AddEdge(int x, int y, int w, int f) {
        add_edge(x, y, w, f);
        add_edge(y, x, -w, 0);
    }
    int anscost, dis[MAXN], vis[MAXN], Pre[MAXN];
    bool SPFA() {
        memset(dis, -0x3f, sizeof(dis));
        memset(vis, 0, sizeof(vis));
        queue<int> q; q.push(S); dis[S] = 0;
        while(!q.empty()) {
            int p = q.front(); q.pop(); vis[p] = 0;
            for(int i = head[p]; i !=- 1; i = E[i].nxt) {
                int to = E[i].v;
                if((dis[to] < dis[p] + E[i].w) && E[i].f > 0) {
                    dis[to] = dis[p] + E[i].w;
                    Pre[to] = i;
                    if(!vis[to]) q.push(to), vis[to] = 1;
                }
            }
        }
        return dis[T] > 0;
    }
    int F() {
        int nowflow = INF;
        for(int i = T; i != S; i = E[Pre[i]].u) nowflow = min(nowflow, E[Pre[i]].f);
        for(int i = T; i != S; i = E[Pre[i]].u) E[Pre[i]].f -= nowflow, E[Pre[i] ^ 1].f += nowflow;
        anscost += dis[T] * nowflow;
    }
    int MCMF() {
        anscost = 0;
        while(SPFA()) 
            F();
        return anscost;
    }
    int be[21][21], tot = 0, X;
    void Solve1() {
        memset(head, -1, sizeof(head)); num = 0;
        for(int i = 1; i < N; i++) {
            for(int j = 1; j <= M + i - 1; j++) {
                AddEdge(be[i][j], be[i][j] + X, a[i][j], 1);
                AddEdge(be[i][j] + X, be[i + 1][j], 0, 1);
                AddEdge(be[i][j] + X, be[i + 1][j + 1], 0, 1);
            }
        }
        for(int i = 1; i <= M; i++) AddEdge(S, be[1][i], 0, 1);
        for(int i = 1; i <= N + M - 1; i++) 
            AddEdge(be[N][i], be[N][i] + X, a[N][i], 1),
            AddEdge(be[N][i] + X, T, 0, 1);
        printf("%d
    ", MCMF());
    }
    void Solve2() {
        memset(head, -1, sizeof(head)); num = 0;
        for(int i = 1; i < N; i++) {
            for(int j = 1; j <= M + i - 1; j++) {
                AddEdge(be[i][j], be[i + 1][j + 1], a[i][j], 1);
                AddEdge(be[i][j], be[i + 1][j], a[i][j], 1);
            }
        }
        for(int i = 1; i <= M; i++) AddEdge(S, be[1][i], 0, 1);
        for(int i = 1; i <= N + M - 1; i++) AddEdge(be[N][i], T, a[N][i], INF);
        printf("%d
    ", MCMF()); 
    }
    void Solve3() {
        memset(head, -1, sizeof(head)); num = 0;
        for(int i = 1; i < N; i++)
            for(int j = 1; j <= M + i - 1; j++) {
                AddEdge(be[i][j], be[i + 1][j + 1], a[i][j], INF);
                AddEdge(be[i][j], be[i + 1][j], a[i][j], INF);
            }
        for(int i = 1; i <= M; i++) AddEdge(S, be[1][i], 0, 1);
        for(int i = 1; i <= N + M - 1; i++) AddEdge(be[N][i], T, a[N][i], INF);
        printf("%d
    ", MCMF());
    }
    int main() {
        memset(head, -1, sizeof(head));
        M = read(); N = read(); X = (N + M - 1) * N;
        for(int i = 1; i <= N; i++)
            for(int j = 1; j <= M + i - 1; j++)
                a[i][j] = read(), be[i][j] = ++tot;
        Solve1();
        Solve2();
        Solve3();
        return 0;
    }
    /*
    
    */

      

  • 相关阅读:
    powerbulider9.0在数据窗口中实现滚动到新添加行
    C#获取当前路径,获取当前路径的上一层路径
    java开发工具使用
    plsql高级查询命令
    oracle基础命令
    oracle-11g-64位安装和plaql
    初识设计模式(装饰者模式)
    初识设计模式(观察者模式)
    观察者模式与发布订阅者模式的区别
    初识设计模式(策略模式)
  • 原文地址:https://www.cnblogs.com/zwfymqz/p/9352810.html
Copyright © 2011-2022 走看看