题意
Sol
树形依赖背包板子题
树形依赖背包大概就是说:对于一个点,只有选了它的父亲才能选自身
把dfs序建出来,倒过来考虑
设(f[i][j])表示从第(i)个节点往后背包体积为(j)的最大价值
转移的时候,只有选了该点才能从子树中转移而来
(f[i][j] = max(f[i + 1][j - w[i]] + val[i], f[i + siz[rev[i]]][j]);)
#include<bits/stdc++.h>
using namespace std;
const int MAXN = 3001, INF = 1e9 + 10;
inline int read() {
char c = getchar(); int x = 0, f = 1;
while(c < '0' || c > '9') {if(c == '-')f =- 1; c = getchar();}
while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
return x * f;
}
int N, M, w[MAXN], val[MAXN], siz[MAXN], rev[MAXN], f[MAXN][MAXN], tot = 0;
vector<int> v[MAXN];
void dfs(int x, int _fa) {
rev[++tot] = x; siz[x] = 1;
for(int i = 0, to; i < v[x].size(); i++) {
if((to = v[x][i]) == _fa) continue;
dfs(to, x);
siz[x] += siz[to];
}
}
main() {
N = read(); M = read();
for(int i = 1; i <= N; i++) val[i] = read(), w[i] = 1;
for(int i = 1; i <= N; i++) {
int x = read(), y = read();
if(x == 0) continue;
v[x].push_back(y); v[y].push_back(x);
}
dfs(1, 0);
for(int i = N; i >= 1; i--) {
for(int j = 0; j <= M; j++) {
f[i][j] = f[i + siz[rev[i]]][j];
if(j >= w[i]) f[i][j] = max(f[i][j], f[i + 1][j - w[rev[i]]] + val[rev[i]]);
// printf("%d %d %d
", i, j, f[i][j]);
}
}
cout << f[1][M];
}
/*
*/