zoukankan      html  css  js  c++  java
  • BZOJ1563: [NOI2009]诗人小G(决策单调性 前缀和 dp)

    题意

    题目链接

    Sol

    很显然的一个dp方程

    (f_i = min(f_j + (sum_i - sum_j - 1 - L)^P))

    其中(sum_i = sum_{j = 1}^i len_j + 1)

    这个东西显然是有决策单调性的。

    单调队列优化一下

    我好像已经做过三个这种类型的题了,而且转移的时候(w)中总是带个幂函数。。interesting

    #include<bits/stdc++.h>
    #define chmax(a, b) (a = (a > b ? a : b))
    #define chmin(a, b) (a = (a < b ? a : b))
    #define LL long long
    #define LDB long double 
    //#define int long long 
    using namespace std;
    const int MAXN = 1e5 + 10;
    inline int read() {
        int x = 0, f = 1; char c = getchar();
        while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
        while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
        return x * f;
    }
    int T, N, L, P, sum[MAXN], q[MAXN], c[MAXN], pre[MAXN];//c???ߵ?λ?
    char str[MAXN][35];
    LDB f[MAXN];
    LDB fastpow(LDB a, int p) {
    	LDB base = 1;
    	while(p) {
    		if(p & 1) base = base * a; 
    		a = a * a; p >>= 1;
    	}
    	return base;
    }
    LDB calc(int j, int i) {
    	return f[j] + fastpow(abs(sum[i] - sum[j] - L), P);
    }
    int lower(int x, int y) {//???x????????
    	int l = x, r = N + 1, ans = 0;
    	while(l <= r) {
    		int mid = l + r >> 1;
    		if(calc(x, mid) >= calc(y, mid)) r = mid - 1;
    		else l = mid + 1;
    	}
    	return l;
    }
    void solve() {
    	N = read(); L = read() + 1; P = read();
    	for(int i = 1; i <= N; i++) {
    		scanf("%s", str[i] + 1);
    		sum[i] = sum[i - 1] + strlen(str[i] + 1) + 1;
    	}
    	memset(q, 0, sizeof(q));
    	for(int i = 1, h = 2, t = 2; i <= N; i++) {
    		while(h < t && c[h] <= i) h++;
    		f[i] = calc(q[h], i); pre[i] = q[h];
    		while(h < t && c[t - 1] >= lower(q[t], i)) t--;
    		c[t] = lower(q[t], i); q[++t] = i;
    	}
    	if(f[N] > 1e18) {puts("Too hard to arrange
    --------------------"); return;}
    	printf("%.0Lf
    ", f[N]);
        puts("--------------------");
    }
    main() {
    	for(T = read(); T; T--) solve();
    }
    
    
  • 相关阅读:
    欧拉工程第72题:Counting fractions
    欧拉工程第71题:Ordered fractions
    欧拉工程第70题:Totient permutation
    欧拉工程第69题:Totient maximum
    欧拉工程第68题:Magic 5-gon ring
    欧拉工程第67题:Maximum path sum II
    欧拉工程第66题:Diophantine equation
    欧拉工程第65题:Convergents of e
    欧拉工程第64题:Odd period square roots
    欧拉工程第63题:Powerful digit counts
  • 原文地址:https://www.cnblogs.com/zwfymqz/p/9763014.html
Copyright © 2011-2022 走看看