今天进行了线性回归方程的简单编程,代码如下:
import tensorflow as tf import numpy as np import matplotlib.pyplot as plt #随机生成1000个点,围绕在y=0.1x+0.3的直线周围 num_points=1000 vectors_set=[] for i in range(num_points): x1=np.random.normal(0.0,0.55) y1=x1*0.1+0.3+np.random.normal(0.0,0.03) vectors_set.append([x1,y1]) #生成一些样本 x_data=[v[0] for v in vectors_set] y_data=[v[1] for v in vectors_set] #plt.scatter(x_data,y_data,c='r') #plt.show() #生成一维的W矩阵,取值是[-1,1]之间的随机数 W=tf.Variable(tf.random_uniform([1],-1.0,1.0),name='W'); #生成一维的b矩阵,初始值为0 b=tf.Variable(tf.zeros([1]),name='b') #经计算得出预估值y y=W*x_data+b # 以预估值y和实际值y_data之间的均方误差作为损失 loss=tf.reduce_mean(tf.square(y-y_data),name='loss') # 采用梯度下降法来优化参数 optimizer=tf.train.GradientDescentOptimizer(0.5) #训练过程就是最小化这个误差值 train=optimizer.minimize(loss,name='train') sess=tf.Session() init=tf.global_variables_initializer() sess.run(init) #打印出初始化的W和b的值 print("初始化后的W=",sess.run(W),"b=",sess.run(b),"loss=",sess.run(loss)) #执行20次的训练 for step in range(40): sess.run(train) #输出训练好的W和b print("W=",sess.run(W),"b=",sess.run(b),"loss=",loss) plt.scatter(x_data,y_data,c='r') plt.plot(x_data,sess.run(W)*x_data+sess.run(b)) plt.show()
实验截图: