题意
给(2n)个物品,分别有(a,b)属性,对于(i=1...n),选择(i)个(a)属性和(i)个(b)属性,且每个物品只能作为一种属性的贡献,求最小的值。
分析
- 看了题解补了两天... 应该叫做可反悔的贪心,或者其实就是网络流?不过因为是特殊的图,所以可以用优先队列来优化。
- 维护四个优先队列,分别是未使用的(a)属性,未使用的(b)属性,已使用的(a)属性转化为(b)属性的花费,已使用的(b)属性转化为(a)属性的花费。
- 对一般情况,每次取出最小(a)属性,取出最小(b)属性转化为(a)属性的花费,以及最小的(b)属性,判断哪种策略更优,对(b)属性同理。
- 很多细节需要注意
- 相同属性值,选择后反悔成另一种属性的花费更小的优先(无需绝对值)。比如(3,2)比(3,4)优先。
- 两种策略的花费相同时,选择直接取出的策略,因为另一种策略需要从另一种最小堆中取出一个元素,使得堆顶元素变大。
- 在前两个最小堆中取元素时需要判断取出元素是否已访问过。
- 进行反悔的元素需要将花费取反然后放到另一个反悔队列里面去。
代码
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=5e5+50;
struct node{
int id;
ll val,sec;
bool operator <(const node& rhs)const{
if(val!=rhs.val){
return val>rhs.val;
}else{
return sec-val>rhs.sec-rhs.val;
}
}
};
priority_queue<node> lc,dn,ltd,dtl;
int n,vis[N];
ll l[N],d[N];
int main(){
// freopen("in.txt","r",stdin);
scanf("%d",&n);
for(int i=1;i<=2*n;i++){
scanf("%lld%lld",&l[i],&d[i]);
lc.push(node{i,l[i],d[i]});
dn.push(node{i,d[i],l[i]});
}
ll ans=0;
for(int i=1;i<=n;i++){
while(!lc.empty() && vis[lc.top().id]){
lc.pop();
}
if(lc.empty()){
auto t=dtl.top();
dtl.pop();
ans+=t.val;
auto g=dn.top();
dn.pop();
ans+=g.val;
ltd.push(node{t.id,d[t.id]-l[t.id]});
dtl.push(node{g.id,l[g.id]-d[g.id],0});
}else{
auto a=lc.top();
while(vis[a.id]){
lc.pop();
a=lc.top();
}
while(!dn.empty() && vis[dn.top().id]){
dn.pop();
}
if(dtl.empty() || dn.empty()){
ans+=a.val;
lc.pop();
vis[a.id]=1;
ltd.push(node{a.id,d[a.id]-l[a.id],0});
}else{
auto b=dtl.top();
auto c=dn.top();
if(a.val<=b.val+c.val){
ans+=a.val;
lc.pop();
vis[a.id]=1;
ltd.push(node{a.id,d[a.id]-l[a.id],0});
}else{
ans+=b.val+c.val;
dtl.pop();
dn.pop();
vis[c.id]=1;
ltd.push(node{b.id,d[b.id]-l[b.id],0});
dtl.push(node{c.id,l[c.id]-d[c.id],0});
}
}
}
while(!dn.empty() && vis[dn.top().id]){
dn.pop();
}
if(dn.empty()){
auto t=ltd.top();
ltd.pop();
ans+=t.val;
auto g=lc.top();
lc.pop();
ans+=g.val;
dtl.push(node{t.id,l[t.id]-d[t.id],0});
ltd.push(node{g.id,d[g.id]-l[g.id],0});
}else{
auto a=dn.top();
while(vis[a.id]){
dn.pop();
a=dn.top();
}
while(!lc.empty() && vis[lc.top().id]){
lc.pop();
}
if(ltd.empty() || lc.empty()){
ans+=a.val;
dn.pop();
vis[a.id]=1;
dtl.push(node{a.id,l[a.id]-d[a.id],0});
}else{
auto b=ltd.top();
auto c=lc.top();
if(a.val<=b.val+c.val){
ans+=a.val;
dn.pop();
vis[a.id]=1;
dtl.push(node{a.id,l[a.id]-d[a.id],0});
}else{
ans+=b.val+c.val;
ltd.pop();
lc.pop();
vis[c.id]=1;
dtl.push(node{b.id,l[b.id]-d[b.id],0});
ltd.push(node{c.id,d[c.id]-l[c.id],0});
}
}
}
printf("%lld
",ans);
}
return 0;
}