zoukankan      html  css  js  c++  java
  • 第十四次作业:手写数字识别-小数据集

    1.手写数字数据集

    # 1.手写数字数据集
    from sklearn.datasets import load_digits
    import numpy as np
    digits = load_digits() # 读取手写数字数据集

    2.图片数据预处理

    • x:归一化MinMaxScaler()
    • # 对X_data进行归一化MinMaxScaler
      scaler = MinMaxScaler()
      X_data = scaler.fit_transform(X_data)
      print("X_data归一化后:",X_data
    • y:独热编码OneHotEncoder()或to_categorical
    • 张量结构
    • # OneHotEncoder独热编码
      from sklearn.preprocessing import OneHotEncoder

      y = digits.target.astype(np.float32).reshape(-1,1) #将Y_data变为一列
      Y = OneHotEncoder().fit_transform(y).todense() #张量结构todense
      print("进行Y独热编码:",Y)

    • 训练集测试集划分
    • # 划分训练集和测试集
      from sklearn.model_selection import train_test_split
      x_train,x_test,y_train,y_test = train_test_split(X,Y,test_size=0.2,random_state=0,stratify=Y)
      print(x_train.shape, x_test.shape, y_train.shape, y_test.shape)

    3.设计卷积神经网络结构

    • 绘制模型结构图,并说明设计依据。
    • #3.设计卷积神经网络结构
      from tensorflow.keras.models import Sequential
      from tensorflow.keras.layers import Dense,Dropout,Conv2D,MaxPool2D,Flatten
      #3、建立模型
      model = Sequential()
      ks = (3, 3)  # 卷积核的大小
      input_shape = x_train.shape[1:]
      # 一层卷积,padding='same',tensorflow会对输入自动补0
      model.add(Conv2D(filters=16, kernel_size=ks, padding='same', input_shape=input_shape, activation='relu'))
      # 池化层1
      model.add(MaxPool2D(pool_size=(2, 2)))
      # 防止过拟合,随机丢掉连接
      model.add(Dropout(0.25))
      # 二层卷积
      model.add(Conv2D(filters=32, kernel_size=ks, padding='same', activation='relu'))
      # 池化层2
      model.add(MaxPool2D(pool_size=(2, 2)))
      model.add(Dropout(0.25))
      # 三层卷积
      model.add(Conv2D(filters=64, kernel_size=ks, padding='same', activation='relu'))
      # 四层卷积
      model.add(Conv2D(filters=128, kernel_size=ks, padding='same', activation='relu'))
      # 池化层3
      model.add(MaxPool2D(pool_size=(2, 2)))
      model.add(Dropout(0.25))
      # 平坦层
      model.add(Flatten())
      # 全连接层
      model.add(Dense(128, activation='relu'))
      model.add(Dropout(0.25))
      # 激活函数softmax
      model.add(Dense(10, activation='softmax'))
      print(model.summary())
    •   

    4.模型训练

    import matplotlib.pyplot as plt
    # 画图
    def show_train_history(train_history, train, validation):
        plt.plot(train_history.history[train])
        plt.plot(train_history.history[validation])
        plt.title('Train History')
        plt.ylabel('train')
        plt.xlabel('epoch')
        plt.legend(['train', 'validation'], loc='upper left')
        plt.show()
     
    #4.模型训练
    model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
    train_history = model.fit(x=x_train, y=y_train, validation_split=0.2, batch_size=300, epochs=10, verbose=2) #训练十次
    # 准确率
    show_train_history(train_history, 'accuracy', 'val_accuracy')
    # 损失率
    show_train_history(train_history, 'loss', 'val_loss')

     准确率:

     

     损失率:

              

    5.模型评价

    • model.evaluate()
    • # 4、模型评价
      import pandas as pd
      import seaborn as sns
      score = model.evaluate(x_test,y_test)
      print("score:",score)
      # 预测值
      pre = model.predict_classes(x_test)
      print("预测值为:",pre[:10])

    • 交叉表与交叉矩阵
    • pandas.crosstab
    • seaborn.heatmap
      # 交差表与交叉矩阵
      y_test1 = np.argmax(y_test,axis=1).reshape(-1)
      y_true = np.array(y_test1)[0]
      # 交叉表查看预测数据与原数据对比
      pd.crosstab(y_true,pre,rownames=['true'],colnames=['predict'])
      # 交叉矩阵
      y_test1 = y_test1.tolist()[0]
      a = pd.crosstab(np.array(y_test1),pre,rownames=['Lables'],colnames=['Predict'])
      # 转换成dataframe
      df = pd.DataFrame(a)
      sns.heatmap(df,annot=True,cmap="Oranges",linewidths=0.2,linecolor="G")

  • 相关阅读:
    集群和高可用
    haproxy-负载均衡介绍
    HAproxy负载均衡-ACL篇
    Haproxy配置文件(2)
    Haproxy原理(1)
    Haproxy状态监控配置教程
    在Windows中单机环境下创建RabbitMQ集群
    Haproxy------在windows下配置负载均衡
    负载均衡的软件
    HAProxy的三种不同类型配置方案
  • 原文地址:https://www.cnblogs.com/zxf001/p/13068712.html
Copyright © 2011-2022 走看看