zoukankan      html  css  js  c++  java
  • Codeforces Gym 100203I I

    I - I WIN
    Time Limit: 2 Sec

    Memory Limit: 256 MB

    题目连接

    http://acm.hust.edu.cn/vjudge/contest/view.action?cid=87954#problem/I

    Description

    Given an n × m rectangular tile with each square marked with one of the letters W, I, and N, find the maximal number of triominoes that can be cut from this tile such that the triomino has W and N on the ends and I in the middle (that is, it spells WIN in some order). Of course the only possible triominoes are the one with three squares in a straight line and the L-shaped ones, and the triominoes can't overlap.

    Input

    First line contains two integers n and m with 1 ≤ m, n ≤ 22. The next n lines contain m characters each (only the letters W, I and N).

    Output

    Output a single integer: the maximum number of nonoverlapping WIN-triominoes.

    Sample Input

    4 4
    WIIW
    NNNN
    IINN
    WWWI

    Sample Output

    5

    HINT

    题意

        给你一个n*m的矩形,最多能找出多少不重复的WIN块?

    题解

              建图方法:

                          S-1-W-1-I-1-I-1-N-T

               注意点考虑到有一个I可能会与两个不同位置的W,N相连 

    还有就是模版6666

    代码:

    #include <cstdio>
    #include <cmath>
    #include <cstring>
    #include <ctime>
    #include <iostream>
    #include <algorithm>
    #include <set>
    #include <vector>
    #include <queue>
    #include <typeinfo>
    #include <map>
    #include <stack>
    typedef long long ll;
    using namespace std;
    inline ll read()
    {
        ll x=0,f=1;
        char ch=getchar();
        while(ch<'0'||ch>'9')
        {
            if(ch=='-')f=-1;
            ch=getchar();
        }
        while(ch>='0'&&ch<='9')
        {
            x=x*10+ch-'0';
            ch=getchar();
        }
        return x*f;
    }
    //***************************
    namespace NetFlow
    {
        const int MAXN=100000,MAXM=500000,inf=1e9;
        struct Edge
        {
            int v,c,f,nx;
            Edge() {}
            Edge(int v,int c,int f,int nx):v(v),c(c),f(f),nx(nx) {}
        } E[MAXM];
        int G[MAXN],cur[MAXN],pre[MAXN],dis[MAXN],gap[MAXN],N,sz;
        void init(int _n)
        {
            N=_n,sz=0; memset(G,-1,sizeof(G[0])*N);
        }
        void link(int u,int v,int c)
        {
            E[sz]=Edge(v,c,0,G[u]); G[u]=sz++;
            E[sz]=Edge(u,0,0,G[v]); G[v]=sz++;
        }
        int ISAP(int S,int T)
        {//S -> T
            int maxflow=0,aug=inf,flag=false,u,v;
            for (int i=0;i<N;++i)cur[i]=G[i],gap[i]=dis[i]=0;
            for (gap[S]=N,u=pre[S]=S;dis[S]<N;flag=false)
            {
                for (int &it=cur[u];~it;it=E[it].nx)
                {
                    if (E[it].c>E[it].f&&dis[u]==dis[v=E[it].v]+1)
                    {
                        if (aug>E[it].c-E[it].f) aug=E[it].c-E[it].f;
                        pre[v]=u,u=v; flag=true;
                        if (u==T)
                        {
                            for (maxflow+=aug;u!=S;)
                            {
                                E[cur[u=pre[u]]].f+=aug;
                                E[cur[u]^1].f-=aug;
                            }
                            aug=inf;
                        }
                        break;
                    }
                }
                if (flag) continue;
                int mx=N;
                for (int it=G[u];~it;it=E[it].nx)
                {
                    if (E[it].c>E[it].f&&dis[E[it].v]<mx)
                    {
                        mx=dis[E[it].v]; cur[u]=it;
                    }
                }
                if ((--gap[dis[u]])==0) break;
                ++gap[dis[u]=mx+1]; u=pre[u];
            }
            return maxflow;
        }
        bool bfs(int S,int T)
        {
            static int Q[MAXN]; memset(dis,-1,sizeof(dis[0])*N);
            dis[S]=0; Q[0]=S;
            for (int h=0,t=1,u,v,it;h<t;++h)
            {
                for (u=Q[h],it=G[u];~it;it=E[it].nx)
                {
                    if (dis[v=E[it].v]==-1&&E[it].c>E[it].f)
                    {
                        dis[v]=dis[u]+1; Q[t++]=v;
                    }
                }
            }
            return dis[T]!=-1;
        }
        int dfs(int u,int T,int low)
        {
            if (u==T) return low;
            int ret=0,tmp,v;
            for (int &it=cur[u];~it&&ret<low;it=E[it].nx)
            {
                if (dis[v=E[it].v]==dis[u]+1&&E[it].c>E[it].f)
                {
                    if (tmp=dfs(v,T,min(low-ret,E[it].c-E[it].f)))
                    {
                        ret+=tmp; E[it].f+=tmp; E[it^1].f-=tmp;
                    }
                }
            }
            if (!ret) dis[u]=-1; return ret;
        }
        int dinic(int S,int T)
        {
            int maxflow=0,tmp;
            while (bfs(S,T))
            {
                memcpy(cur,G,sizeof(G[0])*N);
                while (tmp=dfs(S,T,inf)) maxflow+=tmp;
            }
            return maxflow;
        }
    }
    using namespace NetFlow;
    char mp[333][333];
    int ss[4][2]={-1,0,1,0,0,1,0,-1};
    int n,m;
    int main()
    {
        init(15000);
          n=read();
         m=read();
        for(int i=1; i<=n; i++)
        {
            scanf("%s",mp[i]+1);
        }
        for(int i=1;i<=n;i++){
            for(int j=1;j<=m;j++)
            if(mp[i][j]=='I'){
                link((i-1)*m+j,(i-1)*m+j+500,1);
            }
        }
        for(int i=1; i<=n; i++)
        {
            for(int j=1; j<=m; j++)
            {
                if(mp[i][j]=='W')
                {
                    //mpp[n*m+1][(i-1)*m+j]=1;
                    link(n*m+1+500,(i-1)*m+j,1);
                    for(int e=0; e<4; e++)
                        if(mp[i+ss[e][0]][j+ss[e][1]]=='I')
                        {
    
                            link((i-1)*m+j,(i+ss[e][0]-1)*m+j+ss[e][1],1);
                        }
                }
                if(mp[i][j]=='I')
                {
                    for(int e=0; e<4; e++)
                        if(mp[i+ss[e][0]][j+ss[e][1]]=='N')
                        {
                           link((i-1)*m+j+500,(i+ss[e][0]-1)*m+j+ss[e][1],1);
                        }
                }
                if(mp[i][j]=='N')link((i-1)*m+j,n*m+2+500,1);
            }
        }
        cout<<dinic(n*m+1+500,n*m+1+500+1)<<endl;
      return 0;
    }
  • 相关阅读:
    hdu 1695 GCD(欧拉函数+容斥)
    hdu 5072 Coprime (容斥)
    hdu 4135 Co-prime(容斥)
    畅通工程,继续畅通工程,畅通工程再续,多种解法
    Palindrome
    括号匹配(二)(动态规划)
    搬寝室(动态规划)
    Common Subsequence(lcs)
    周赛题解
    亲和串(两种方法妙解)
  • 原文地址:https://www.cnblogs.com/zxhl/p/4733393.html
Copyright © 2011-2022 走看看