zoukankan      html  css  js  c++  java
  • HDU 5475An easy problem 离线set/线段树

    An easy problem

    Time Limit: 8000/5000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)


    Problem Description
    One day, a useless calculator was being built by Kuros. Let's assume that number X is showed on the screen of calculator. At first, X = 1. This calculator only supports two types of operation.
    1. multiply X with a number.
    2. divide X with a number which was multiplied before.
    After each operation, please output the number X modulo M.
     
    Input
    The first line is an integer T(1T10), indicating the number of test cases.
    For each test case, the first line are two integers Q and M. Q is the number of operations and M is described above. (1Q105,1M109)
    The next Q lines, each line starts with an integer x indicating the type of operation.
    if x is 1, an integer y is given, indicating the number to multiply. (0<y109)
    if x is 2, an integer n is given. The calculator will divide the number which is multiplied in the nth operation. (the nth operation must be a type 1 operation.)

    It's guaranteed that in type 2 operation, there won't be two same n.
     
    Output
    For each test case, the first line, please output "Case #x:" and x is the id of the test cases starting from 1.
    Then Q lines follow, each line please output an answer showed by the calculator.
     
    Sample Input
    1 10 1000000000 1 2 2 1 1 2 1 10 2 3 2 4 1 6 1 7 1 12 2 7
     
    Sample Output
    Case #1: 2 1 2 20 10 1 6 42 504 84
     
    Source
     
     
    题解:考虑到取摸,离线做
    或者线段树上搞
    ///1085422276
    #include<iostream>
    #include<cstdio>
    #include<cstring>
    #include<string>
    #include<algorithm>
    #include<queue>
    #include<cmath>
    #include<map>
    #include<bitset>
    #include<set>
    #include<vector>
    using namespace std ;
    typedef long long ll;
    #define mem(a) memset(a,0,sizeof(a))
    #define meminf(a) memset(a,127,sizeof(a));
    #define TS printf("111111
    ");
    #define FOR(i,a,b) for( int i=a;i<=b;i++)
    #define FORJ(i,a,b) for(int i=a;i>=b;i--)
    #define READ(a,b,c) scanf("%d%d%d",&a,&b,&c)
    #define mod 1000000007
    #define inf 100000
    inline ll read()
    {
        ll x=0,f=1;
        char ch=getchar();
        while(ch<'0'||ch>'9')
        {
            if(ch=='-')f=-1;
            ch=getchar();
        }
        while(ch>='0'&&ch<='9')
        {
            x=x*10+ch-'0';
            ch=getchar();
        }
        return x*f;
    }
    //****************************************
    struct ss
    {
        int id,x;
        bool operator < (const ss &A)const
        {
            return id < A.id;
        }
    };
    #define maxn 100000+5
    set<ss >s;
    set<ss >::iterator it;
    int main()
    {
        int oo=1;
        ll n,q,m,x[maxn],op[maxn],vis[maxn],ans[maxn],A[maxn];
        int T=read();
        while(T--)
        {
            scanf("%I64d%I64d",&n,&m);
            FOR(i,1,n)
            {
                scanf("%I64d%I64d",&op[i],&x[i]);
            }
            mem(vis);
            FOR(i,1,n)
            {
                if(op[i]==2)vis[x[i]]=1;
            }
            mem(ans);
            ans[0]=1;
            FOR(i,1,n)
            {
                ans[i]=ans[i-1];
                if(op[i]==1&&!vis[i])
                {
                    ans[i]=(ans[i]*x[i])%m;
                }
            }
            //cout<<ans[10]<<endl;
            s.clear();
            for(int i=n; i>=1; i--)
            {
                ll tmp=1;
                for(it=s.begin(); it!=s.end(); it++)
                {
                    if((*it).id>i)break;
                    tmp*=(*it).x;
                    tmp%=m;
                }
                A[i]=(ans[i]*tmp)%m;
                if(op[i]==2)
                {
                    ss g;
                    g.id=x[i];
                    g.x=x[x[i]];
                    s.insert(g);
                }
            }
            printf("Case #%d:
    ",oo++);
            for(int i=1; i<=n; i++)
                cout<<A[i]<<endl;
        }
        return 0;
    }
    代码
     
  • 相关阅读:
    HTML文件中表格(Table)标记的常用属性
    QTP 学习
    QTP与Selenium的比较
    loadrunner简单使用——HTTP,WebService,Socket压力测试脚本编写
    linux
    linux
    AcWing1131 拯救大兵瑞恩(最短路)
    AcWing341 最优贸易(spfa+dp思想)
    AcWing342 道路与航线(最短路+DAG)
    AcWing340 通信线路
  • 原文地址:https://www.cnblogs.com/zxhl/p/4847701.html
Copyright © 2011-2022 走看看