zoukankan      html  css  js  c++  java
  • ZOJ 3872 计算对答案的贡献

                                                   D - Beauty of Array

    Description

    Edward has an array A with N integers. He defines the beauty of an array as the summation of all distinct integers in the array. Now Edward wants to know the summation of the beauty of all contiguous subarray of the array A.

    Input

    There are multiple test cases. The first line of input contains an integer T indicating the number of test cases. For each test case:

    The first line contains an integer N (1 <= N <= 100000), which indicates the size of the array. The next line contains N positive integers separated by spaces. Every integer is no larger than 1000000.

    Output

    For each case, print the answer in one line.

    Sample Input

    3
    5
    1 2 3 4 5
    3
    2 3 3
    4
    2 3 3 2
    

    Sample Output

    105
    21
    38

    题意:给你一个数组,找出所有任意连续子序列中美数和,一段子序列美数和定义为:互异数的和
    题解:计算对答案的贡献
    #include<map>
    #include<set>
    #include<cmath>
    #include<queue>
    #include<cstdio>
    #include<vector>
    #include<string>
    #include<cstring>
    #include<iostream>
    #include<algorithm>
    #pragma comment(linker, "/STACK:102400000,102400000")
    using namespace std;
    const int N=1010;
    const int MAX=151;
    const int MOD=1000000007;
    const int INF=1000000000;
    const double EPS=0.00000001;
    typedef long long ll;
    int read()
    {
        int x=0,f=1;char ch=getchar();
        while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
        while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
        return x*f;
    }
    int num[1000100];
    int main()
    {
        int a,i,n,T;
        ll ans;
        scanf("%d", &T);
        while (T--) {
            scanf("%d", &n);
            ans=0;
            memset(num,0,sizeof(num));
            for (i=1;i<=n;i++) {
                scanf("%d", &a);
                ans+=(ll)(i-num[a])*(n-i+1)*a;
                num[a]=i;
            }
            printf("%lld
    ", ans);
        }
        return 0;
    }
    代码
  • 相关阅读:
    POJ1064 Cable master(二分 浮点误差)
    Codeforces1113F. Sasha and Interesting Fact from Graph Theory(组合数学 计数 广义Cayley定理)
    Codeforces1100F. Ivan and Burgers(离线+线性基)
    Codeforces1097D. Makoto and a Blackboard(数论+dp+概率期望)
    Codeforces1099F. Cookies(线段树+dp+贪心+博弈)
    python-zx笔记4-文件操作
    python-zx笔记3-函数
    python-zx笔记2-help
    fiddler使用笔记1
    理解OAuth 2.0
  • 原文地址:https://www.cnblogs.com/zxhl/p/4865476.html
Copyright © 2011-2022 走看看