zoukankan      html  css  js  c++  java
  • HDU 5446 CRT+Lucas+快速乘

                                            Unknown Treasure

    Problem Description
    On the way to the next secret treasure hiding place, the mathematician discovered a cave unknown to the map. The mathematician entered the cave because it is there. Somewhere deep in the cave, she found a treasure chest with a combination lock and some numbers on it. After quite a research, the mathematician found out that the correct combination to the lock would be obtained by calculating how many ways are there to pick m different apples among n of them and modulo it with MM is the product of several different primes.
     
    Input
    On the first line there is an integer T(T20) representing the number of test cases.

    Each test case starts with three integers n,m,k(1mn1018,1k10) on a line where k is the number of primes. Following on the next line are kdifferent primes p1,...,pk. It is guaranteed that M=p1p2pk1018 and pi105 for every i{1,...,k}.
     
    Output
    For each test case output the correct combination on a line.
     
    Sample Input
    1 9 5 2 3 5
     
    Sample Output
    6
     
    Source
     
     
    题意:M=p1*p2*...pk;求C(n,m)%M,pi小于10^5,n,m,M都是小于10^18。 pi为质数
    题解:首先M=x*pi(1<=i<=k)
        M不一定是质数 所以只能用Lucas定理求k次 C(n,m)%Pi得到 B[i];
       最后会得到一个同余方程组
       x≡B[0](mod p[0])
       x≡B[1](mod p[1])
       x≡B[2](mod p[2])
       ......
       解这个同余方程组 用中国剩余定理
      但ll*ll都会爆所以用快速乘
    #include<cstdio>
    #include<cstring>
    #include<algorithm>
    #include<vector>
    #include<string>
    #include<iostream>
    #include<queue>
    #include<cmath>
    #include<map>
    #include<stack>
    #include<set>
    using namespace std;
    #define REPF( i , a , b ) for ( int i = a ; i <= b ; ++ i )
    #define REP( i , n ) for ( int i = 0 ; i < n ; ++ i )
    #define CLEAR( a , x ) memset ( a , x , sizeof a )
    const int INF=0x3f3f3f3f;
    typedef long long LL;
    LL M[15],B[15];
    int t;
    LL n,m,p,num;
    LL exgcd(LL a, LL b, LL &x, LL &y)
    {
        if (!b)
        {
            x = 1;
            y = 0;
            return a;
        }
        LL gcd = exgcd(b, a % b, x, y);
        LL t = x;
        x = y;
        y = t - (a / b) * x;
        return gcd;
    }
    LL mult(LL a,LL b,LL p)
    {
        LL ans=0;
        while(b)
        {
            if(b&1)
                ans=(ans+a)%p;
            b>>=1;
            a=(a+a)%p;
        }
        return ans;
    }
    LL inverse(LL num, LL mod)
    {
        LL x, y;
        exgcd(num, mod, x, y);
        return (x % mod + mod) % mod;
    }
    
    LL C(LL a, LL b, LL mod)
    {
        if (b > a)
            return 0;
        LL t1 = 1, t2 = 1;
        for (int i = 1; i <= b; ++i)
        {
            t2 *= i;
            t2 %= mod;
            t1 *= (a - i + 1);
            t1 %= mod;
        }
        return mult(t1,inverse(t2, mod),mod);
    }
    LL lucas(LL n, LL m, LL p)
    {
        if (m == 0)
            return 1;
        return mult(C(n % p, m % p, p),lucas(n / p, m / p, p),p);
    }
    LL China(LL m[],LL b[],int k)//m:模数 b:余数
    {
        LL n=1,xx,yy;
        LL ans=0;
        for(int i=0;i<k;i++)
            n*=M[i];
        for(int i=0;i<k;i++)
        {
            LL t=n/M[i];
            exgcd(t,M[i],xx,yy);
            LL x1=mult(xx,t,n);
            LL x2=mult(x1,b[i],n);
            ans=(ans+x2)%n;
        }
        return (ans%n+n)%n;
    }
    int main()
    {
        scanf("%d",&t);
        while(t--)
        {
            scanf("%lld%lld%lld",&n,&m,&num);
            for(int i=0;i<num;i++)
            {
                scanf("%d",&p);
                M[i]=p;
                B[i]=lucas(n,m,p);
            }
            LL ans=China(M,B,num);
            printf("%lld
    ",ans);
        }
        return 0;
    }
    来自Tisuama
  • 相关阅读:
    题6:利用二进制表示浮点数
    题5:将整数二进制形式的奇偶位交换
    如何访问别的主机共享的文件
    排序算法------插入排序
    centos7进入单用户模式修改root密码
    排序算法------选择排序法
    排序算法------冒泡排序法
    题4:判断一个数是否时2的整数次方
    LockSupport类
    synchronized原理及锁膨胀
  • 原文地址:https://www.cnblogs.com/zxhl/p/4870487.html
Copyright © 2011-2022 走看看