zoukankan      html  css  js  c++  java
  • HDU 5446 CRT+Lucas+快速乘

                                            Unknown Treasure

    Problem Description
    On the way to the next secret treasure hiding place, the mathematician discovered a cave unknown to the map. The mathematician entered the cave because it is there. Somewhere deep in the cave, she found a treasure chest with a combination lock and some numbers on it. After quite a research, the mathematician found out that the correct combination to the lock would be obtained by calculating how many ways are there to pick m different apples among n of them and modulo it with MM is the product of several different primes.
     
    Input
    On the first line there is an integer T(T20) representing the number of test cases.

    Each test case starts with three integers n,m,k(1mn1018,1k10) on a line where k is the number of primes. Following on the next line are kdifferent primes p1,...,pk. It is guaranteed that M=p1p2pk1018 and pi105 for every i{1,...,k}.
     
    Output
    For each test case output the correct combination on a line.
     
    Sample Input
    1 9 5 2 3 5
     
    Sample Output
    6
     
    Source
     
     
    题意:M=p1*p2*...pk;求C(n,m)%M,pi小于10^5,n,m,M都是小于10^18。 pi为质数
    题解:首先M=x*pi(1<=i<=k)
        M不一定是质数 所以只能用Lucas定理求k次 C(n,m)%Pi得到 B[i];
       最后会得到一个同余方程组
       x≡B[0](mod p[0])
       x≡B[1](mod p[1])
       x≡B[2](mod p[2])
       ......
       解这个同余方程组 用中国剩余定理
      但ll*ll都会爆所以用快速乘
    #include<cstdio>
    #include<cstring>
    #include<algorithm>
    #include<vector>
    #include<string>
    #include<iostream>
    #include<queue>
    #include<cmath>
    #include<map>
    #include<stack>
    #include<set>
    using namespace std;
    #define REPF( i , a , b ) for ( int i = a ; i <= b ; ++ i )
    #define REP( i , n ) for ( int i = 0 ; i < n ; ++ i )
    #define CLEAR( a , x ) memset ( a , x , sizeof a )
    const int INF=0x3f3f3f3f;
    typedef long long LL;
    LL M[15],B[15];
    int t;
    LL n,m,p,num;
    LL exgcd(LL a, LL b, LL &x, LL &y)
    {
        if (!b)
        {
            x = 1;
            y = 0;
            return a;
        }
        LL gcd = exgcd(b, a % b, x, y);
        LL t = x;
        x = y;
        y = t - (a / b) * x;
        return gcd;
    }
    LL mult(LL a,LL b,LL p)
    {
        LL ans=0;
        while(b)
        {
            if(b&1)
                ans=(ans+a)%p;
            b>>=1;
            a=(a+a)%p;
        }
        return ans;
    }
    LL inverse(LL num, LL mod)
    {
        LL x, y;
        exgcd(num, mod, x, y);
        return (x % mod + mod) % mod;
    }
    
    LL C(LL a, LL b, LL mod)
    {
        if (b > a)
            return 0;
        LL t1 = 1, t2 = 1;
        for (int i = 1; i <= b; ++i)
        {
            t2 *= i;
            t2 %= mod;
            t1 *= (a - i + 1);
            t1 %= mod;
        }
        return mult(t1,inverse(t2, mod),mod);
    }
    LL lucas(LL n, LL m, LL p)
    {
        if (m == 0)
            return 1;
        return mult(C(n % p, m % p, p),lucas(n / p, m / p, p),p);
    }
    LL China(LL m[],LL b[],int k)//m:模数 b:余数
    {
        LL n=1,xx,yy;
        LL ans=0;
        for(int i=0;i<k;i++)
            n*=M[i];
        for(int i=0;i<k;i++)
        {
            LL t=n/M[i];
            exgcd(t,M[i],xx,yy);
            LL x1=mult(xx,t,n);
            LL x2=mult(x1,b[i],n);
            ans=(ans+x2)%n;
        }
        return (ans%n+n)%n;
    }
    int main()
    {
        scanf("%d",&t);
        while(t--)
        {
            scanf("%lld%lld%lld",&n,&m,&num);
            for(int i=0;i<num;i++)
            {
                scanf("%d",&p);
                M[i]=p;
                B[i]=lucas(n,m,p);
            }
            LL ans=China(M,B,num);
            printf("%lld
    ",ans);
        }
        return 0;
    }
    来自Tisuama
  • 相关阅读:
    贝叶斯公式由浅入深大讲解—AI基础算法入门
    再谈前端HTML模板技术
    再谈angularJS数据绑定机制及背后原理—angularJS常见问题总结
    mac版chrome升级到Version 65.0.3325.18后无法打开百度bing搜狗
    图说js中的this——深入理解javascript中this指针
    web app响应式字体设置!rem之我见
    【2020-04-18】 加班
    【2020-04-06】汇郡海下的沉思
    【2020-03-28】Dubbo源码杂谈
    【2020-03-21】Dubbo本地环境搭建-实现服务注册和消费
  • 原文地址:https://www.cnblogs.com/zxhl/p/4870487.html
Copyright © 2011-2022 走看看