zoukankan      html  css  js  c++  java
  • HDU 5446 CRT+Lucas+快速乘

                                            Unknown Treasure

    Problem Description
    On the way to the next secret treasure hiding place, the mathematician discovered a cave unknown to the map. The mathematician entered the cave because it is there. Somewhere deep in the cave, she found a treasure chest with a combination lock and some numbers on it. After quite a research, the mathematician found out that the correct combination to the lock would be obtained by calculating how many ways are there to pick m different apples among n of them and modulo it with MM is the product of several different primes.
     
    Input
    On the first line there is an integer T(T20) representing the number of test cases.

    Each test case starts with three integers n,m,k(1mn1018,1k10) on a line where k is the number of primes. Following on the next line are kdifferent primes p1,...,pk. It is guaranteed that M=p1p2pk1018 and pi105 for every i{1,...,k}.
     
    Output
    For each test case output the correct combination on a line.
     
    Sample Input
    1 9 5 2 3 5
     
    Sample Output
    6
     
    Source
     
     
    题意:M=p1*p2*...pk;求C(n,m)%M,pi小于10^5,n,m,M都是小于10^18。 pi为质数
    题解:首先M=x*pi(1<=i<=k)
        M不一定是质数 所以只能用Lucas定理求k次 C(n,m)%Pi得到 B[i];
       最后会得到一个同余方程组
       x≡B[0](mod p[0])
       x≡B[1](mod p[1])
       x≡B[2](mod p[2])
       ......
       解这个同余方程组 用中国剩余定理
      但ll*ll都会爆所以用快速乘
    #include<cstdio>
    #include<cstring>
    #include<algorithm>
    #include<vector>
    #include<string>
    #include<iostream>
    #include<queue>
    #include<cmath>
    #include<map>
    #include<stack>
    #include<set>
    using namespace std;
    #define REPF( i , a , b ) for ( int i = a ; i <= b ; ++ i )
    #define REP( i , n ) for ( int i = 0 ; i < n ; ++ i )
    #define CLEAR( a , x ) memset ( a , x , sizeof a )
    const int INF=0x3f3f3f3f;
    typedef long long LL;
    LL M[15],B[15];
    int t;
    LL n,m,p,num;
    LL exgcd(LL a, LL b, LL &x, LL &y)
    {
        if (!b)
        {
            x = 1;
            y = 0;
            return a;
        }
        LL gcd = exgcd(b, a % b, x, y);
        LL t = x;
        x = y;
        y = t - (a / b) * x;
        return gcd;
    }
    LL mult(LL a,LL b,LL p)
    {
        LL ans=0;
        while(b)
        {
            if(b&1)
                ans=(ans+a)%p;
            b>>=1;
            a=(a+a)%p;
        }
        return ans;
    }
    LL inverse(LL num, LL mod)
    {
        LL x, y;
        exgcd(num, mod, x, y);
        return (x % mod + mod) % mod;
    }
    
    LL C(LL a, LL b, LL mod)
    {
        if (b > a)
            return 0;
        LL t1 = 1, t2 = 1;
        for (int i = 1; i <= b; ++i)
        {
            t2 *= i;
            t2 %= mod;
            t1 *= (a - i + 1);
            t1 %= mod;
        }
        return mult(t1,inverse(t2, mod),mod);
    }
    LL lucas(LL n, LL m, LL p)
    {
        if (m == 0)
            return 1;
        return mult(C(n % p, m % p, p),lucas(n / p, m / p, p),p);
    }
    LL China(LL m[],LL b[],int k)//m:模数 b:余数
    {
        LL n=1,xx,yy;
        LL ans=0;
        for(int i=0;i<k;i++)
            n*=M[i];
        for(int i=0;i<k;i++)
        {
            LL t=n/M[i];
            exgcd(t,M[i],xx,yy);
            LL x1=mult(xx,t,n);
            LL x2=mult(x1,b[i],n);
            ans=(ans+x2)%n;
        }
        return (ans%n+n)%n;
    }
    int main()
    {
        scanf("%d",&t);
        while(t--)
        {
            scanf("%lld%lld%lld",&n,&m,&num);
            for(int i=0;i<num;i++)
            {
                scanf("%d",&p);
                M[i]=p;
                B[i]=lucas(n,m,p);
            }
            LL ans=China(M,B,num);
            printf("%lld
    ",ans);
        }
        return 0;
    }
    来自Tisuama
  • 相关阅读:
    基于项目中遇到的技术问题,谈谈SharedPreferences的使用的注意问题
    mongodb数据库从库同步主库维护js脚本
    MongoDB数据库日志备份压缩脚本
    mongodb数据库磁盘碎片整理。
    mongodb表字段处理生成域名字段
    根据当前进程号,获取进程下线程数目
    mongodb mapreduce示例
    MongoDB数据库库级锁研究分析
    mongodb库表信息监控脚本
    利用JAVA设计一个可视化日历
  • 原文地址:https://www.cnblogs.com/zxhl/p/4870487.html
Copyright © 2011-2022 走看看