zoukankan      html  css  js  c++  java
  • HDU 5489 Difference of Clustering 图论

    Difference of Clustering




    Problem Description
    Given two clustering algorithms, the old and the new, you want to find the difference between their results. 
    A clustering algorithm takes many member entities as input and partition them into clusters. In this problem, a member entity must be clustered into exactly one cluster. However, we don’t have any pre-knowledge of the clusters, so different algorithms may produce different number of clusters as well as different cluster IDs. One thing we are sure about is that the memberIDs are stable, which means that the same member ID across different algorithms indicates the same member entity.
    To compare two clustering algorithms, we care about three kinds of relationship between the old clusters and the new clusters: split, merge and 1:1. Please refer to the figure below.

    Let’s explain them with examples. Say in the old result, m0, m1, m2 are clustered into one cluster c0, but in the new result, m0 and m1 are clustered into c0, but m2 alone is clustered into c1. We denote the relationship like the following:
    ●  In the old, c0 = [m0, m1, m2]
    ●  In the new, c0 = [m0, m1], c1 = [m2]
    There is no other members in the new c0 and c1. Then we say the old c0 is split into new c0 and new c1. A few more examples:
    ●  In the old, c0 = [m0, m1, m2]
    ●  In the new, c0 = [m0, m1, m2]. 
    This is 1:1.
    ●  In the old, c0 = [m0, m1], c1 = [m2]
    ●  In the new, c0 = [m0, m1, m2]
    This is merge. Please note, besides these relationship, there is another kind called “n:n”:
    ●  In the old, c0 = [m0, m1], c1 = [m2, m3]
    ●  In the new, c0 = [m0, m1, m2], c1 = [m3]
    We don’t care about n:n. 
    In this problem, we will give you two sets of clustering results, each describing the old and the new. We want to know the total number of splits, merges, and 1:1 respectively.

     
    Input
    The first line of input contains a number T indicating the number of test cases (T100).
    Each test case starts with a line containing an integer N indicating the number of member entities (0N106 ). In the following N lines, the i-th line contains two integers c1 and c2, which means that the member entity with ID i is partitioned into cluster c1 and cluster c2 by the old algorithm and the new algorithm respectively. The cluster IDs c1 and c2 can always fit into a 32-bit signed integer.
     
    Output
    For each test case, output a single line consisting of “Case #X: A B C”. X is the test case number starting from 1. AB, and C are the numbers of splits, merges, and 1:1s.
     
    Sample Input
    2 3 0 0 0 0 0 1 4 0 0 0 0 1 1 1 1
     
    Sample Output
    Case #1: 1 0 0 Case #2: 0 0 2
     
    Source
     
    题意:  给你n个关系,每个关系是a,b,表示a,b间连了一条边(注意要去重边),问你一对多,多对一,1对1的情况分别有多少种
             例如:样例1就是
                                  0->1&&0->0
    题解:  图论中的求出度,入度判断是哪种,STL大法
    ///1085422276
    #include<iostream>
    #include<cstdio>
    #include<cstring>
    #include<string>
    #include<algorithm>
    #include<queue>
    #include<cmath>
    #include<map>
    #include<bitset>
    #include<set>
    #include<vector>
    using namespace std ;
    typedef __int64 ll;
    #define mem(a) memset(a,0,sizeof(a))
    #define meminf(a) memset(a,127,sizeof(a));
    #define memfy(a)  memset(a,-1,sizeof(a));
    #define TS printf("111111
    ");
    #define FOR(i,a,b) for( int i=a;i<=b;i++)
    #define FORJ(i,a,b) for(int i=a;i>=b;i--)
    #define READ(a,b,c) scanf("%d%d%d",&a,&b,&c)
    #define mod 1000000007
    #define inf 100000000
    inline ll read()
    {
        ll x=0,f=1;
        char ch=getchar();
        while(ch<'0'||ch>'9')
        {
            if(ch=='-')f=-1;
            ch=getchar();
        }
        while(ch>='0'&&ch<='9')
        {
            x=x*10+ch-'0';
            ch=getchar();
        }
        return x*f;
    }
    //****************************************
    
    #define maxn 1000000+6
    struct ss
    {
        int to,next;
    } e[maxn];
    struct node
    {
        int x,index;//0,1;
    };
    int head[maxn],n,a,b,t,in[maxn][2],A,B,C;
    map<pair<int ,int >,int  >mp;
    map<int ,int >vis,vis2;
    map<int ,vector<int > >mpp,mpp2;
    vector<int >V1,V2;
    vector<int >::iterator it;;
    int main()
    {
    
        int T=read();
        int oo=1;
        while(T--)
        {
            // init();
            scanf("%d",&n);
            mp.clear();
            V1.clear();
            V2.clear();
            mpp2.clear();
            mpp.clear();
            vis.clear();
            vis2.clear();
            int k=0;
            FOR(i,1,n)
            {
                scanf("%d%d",&a,&b);
                if(mp[make_pair(a,b)])continue;
                mpp[a].push_back(b);
                mpp2[b].push_back(a);
                if(!vis[a])
                V1.push_back(a);
                if(!vis2[b])
                V2.push_back(b);
                vis[a]=1;
                vis2[b]=1;
                mp[make_pair(a,b)]=1;
            }
            A=0;
            B=0;
            C=0;
            int sum;
            for(int i=0; i<V1.size(); i++)
            {
                sum=0;
                for(it=mpp[V1[i]].begin(); it!=mpp[V1[i]].end(); it++)
                {
                    sum+=mpp2[*it].size();
                }
                if(sum==mpp[V1[i]].size())
                {
                    if(sum==1)
                        C++;
                    else
                    {
                        A++;
                    }
                }
            }
            for(int i=0; i<V2.size(); i++)
            {
                sum=0;
                for(it=mpp2[V2[i]].begin(); it!=mpp2[V2[i]].end(); it++)
                {
                    sum+=mpp[*it].size();
                }
                if(sum==mpp2[V2[i]].size())
                {  //cout<<mpp[V2[i]].size()<<endl;
                    if(sum==1)
                        C++;
                    else
                    {
                        B++;
                    }
                }
            }
            printf("Case #%d: ",oo++);
            cout<<A<<" "<<B<<" "<<C/2<<endl;
    
        }
        return 0;
    }
    代码
  • 相关阅读:
    Python基础(2)——数据类型:Numbers、列表、元组、字典、字符串、数据运算
    Exadata V2 Pricing
    Oracle网络TNS协议介绍(revised)
    V$LOCK视图显示TX锁没有对应的TM锁的几种可能现象
    Poor Data Export Performance(revised)
    single quote needed in expdp query?
    No way to disable datapump estimate?
    Oracle网络TNS协议的几个基础类描述(revised)
    logfile switch causes incremental checkpoint?
    图文详解安装NetBackup 6.5备份恢复Oracle 10g rac 数据库(修订)
  • 原文地址:https://www.cnblogs.com/zxhl/p/4908819.html
Copyright © 2011-2022 走看看