zoukankan      html  css  js  c++  java
  • UVA 11361

    An integer is divisible by 3 if the sum of its digits is also divisible by 3. For example, 3702 is divisible
    by 3 and 12(3+7+0+2) is also divisible by 3. This property also holds for the integer 9.
    In this problem, we will investigate this property for other integers.
    Input
    The first line of input is an integer T (T < 100) that indicates the number of test cases. Each case is
    a line containing 3 positive integers A, B and K. 1 ≤ A ≤ B < 2
    31 and 0 < K < 10000.
    Output
    For each case, output the number of integers in the range [A, B] which is divisible by K and the sum
    of its digits is also divisible by K.
    Sample Input
    3
    1 20 1
    1 20 2
    1 1000 4
    Sample Output
    20
    5
    64

    题意:给出a,b,k,问说在[a,b]这个区间有多少n,满足n整除k,以及n的各个为上的数字之和也整除k。

    题解:dp[i][j][k] 表示  i位  j=数%K,k=位数和%K

    //meek///#include<bits/stdc++.h>
    #include <cstdio>
    #include <cmath>
    #include <cstring>
    #include <algorithm>
    #include<iostream>
    #include<bitset>
    #include<vector>
    #include <queue>
    #include <map>
    #include <set>
    #include <stack>
    using namespace std ;
    #define mem(a) memset(a,0,sizeof(a))
    #define pb push_back
    #define fi first
    #define se second
    #define MP make_pair
    typedef long long ll;
    
    const int N = 100+100;
    const int M = 1000001;
    const int inf = 0x3f3f3f3f;
    const ll MOD = 1000000000;
    
    
    ll a,b,k,len;
    ll vis[100][N][N],dp[100][N][N],d[100];
    void init(int n) {
        len = 1;
        mem(d);
        while(n) d[len++] = n%10,n /= 10;
    
         for(int i = 1;i <= len/2; i++)
            swap(d[i],d[len-i+1]);
    }
    ll solve(ll n) {
        if(n == 0) return 1;
        init(n);
        mem(dp);
        int  p = 0, q = 0;
    
        for(int i=1;i<=len;i++) {
    
            for(int j=0;j<=k;j++)
                for(int t = 0;t <= k; t++) {
                    for(int x = 0;x < 10; x++) {
                        dp[i][(j*10+x)%k][(t+x)%k] += dp[i-1][j][t];
                    }
                }
    
            for(int j = 0; j < d[i]; j++)
                dp[i][(p*10+j)%k][(q+j)%k]++;
    
            p = (p*10+d[i])%k;
            q = (q+d[i])%k;
        }
        if(p == 0 && q == 0) dp[len][0][0]++;
        return dp[len][0][0];
    }
    int main() {
        int T;
        scanf("%d",&T);
        while(T--) {
            scanf("%lld%lld%lld",&a,&b,&k);
            if(k>100) printf("0
    ");
            else 
            printf("%lld
    ",solve(b)-solve(a-1));
        }
        return 0;
    }
    bear
    //meek///#include<bits/stdc++.h>
    #include <cstdio>
    #include <cmath>
    #include <cstring>
    #include <algorithm>
    #include<iostream>
    #include<bitset>
    #include<vector>
    #include <queue>
    #include <map>
    #include <set>
    #include <stack>
    using namespace std ;
    #define mem(a) memset(a,0,sizeof(a))
    #define pb push_back
    #define fi first
    #define se second
    #define MP make_pair
    typedef long long ll;
    
    const int N = 100+100;
    const int M = 1000001;
    const int inf = 0x3f3f3f3f;
    const ll MOD = 1000000000;
    
    
    ll a,b,k;
    ll vis[100][N][N],dp[100][N][N],d[100];
    ll dfs(int dep,int f,int sum,int P) {
        if(dep<0) return sum%k==0&&P%k==0;
        if(f&&vis[dep][sum][P]) return  dp[dep][sum][P];
        if(f) {
            ll& ret = dp[dep][sum][P];
            vis[dep][sum][P] = 1;
            for(int i=0;i<=9;i++) {
                ret += dfs(dep-1,f,(sum*10+i)%k,P+i);
            }
        return ret;
        }
        else {
            ll ret = 0;
            for(int i=0;i<=d[dep];i++) {
                ret +=dfs(dep-1,i<d[dep],(sum*10+i)%k,P+i);
            }
            return ret;
        }
    }
    ll solve(int n) {
        mem(vis),mem(dp);
        int len = 0;
        while(n) d[len++] = n%10,n /= 10;
        return dfs(len-1,0,0,0);
    }
    int main() {
        int T;
        scanf("%d",&T);
        while(T--) {
            scanf("%lld%lld%lld",&a,&b,&k);
            printf("%lld
    ",solve(b)-solve(a-1));
        }
        return 0;
    }
    meek
  • 相关阅读:
    LeetCode 152. 乘积最大子数组 | Python
    LeetCode 31. 下一个排列 | Python
    LeetCode 136. 只出现一次的数字 | Python
    LeetCode 102. 二叉树的层序遍历 | Python
    LeetCode 155. 最小栈 | Python
    LeetCode 69. x 的平方根 | Python
    Python3 高阶函数
    Python3 装饰器
    Python3 递归函数
    Python3 函数
  • 原文地址:https://www.cnblogs.com/zxhl/p/5085364.html
Copyright © 2011-2022 走看看