zoukankan      html  css  js  c++  java
  • UVA 11361

    An integer is divisible by 3 if the sum of its digits is also divisible by 3. For example, 3702 is divisible
    by 3 and 12(3+7+0+2) is also divisible by 3. This property also holds for the integer 9.
    In this problem, we will investigate this property for other integers.
    Input
    The first line of input is an integer T (T < 100) that indicates the number of test cases. Each case is
    a line containing 3 positive integers A, B and K. 1 ≤ A ≤ B < 2
    31 and 0 < K < 10000.
    Output
    For each case, output the number of integers in the range [A, B] which is divisible by K and the sum
    of its digits is also divisible by K.
    Sample Input
    3
    1 20 1
    1 20 2
    1 1000 4
    Sample Output
    20
    5
    64

    题意:给出a,b,k,问说在[a,b]这个区间有多少n,满足n整除k,以及n的各个为上的数字之和也整除k。

    题解:dp[i][j][k] 表示  i位  j=数%K,k=位数和%K

    //meek///#include<bits/stdc++.h>
    #include <cstdio>
    #include <cmath>
    #include <cstring>
    #include <algorithm>
    #include<iostream>
    #include<bitset>
    #include<vector>
    #include <queue>
    #include <map>
    #include <set>
    #include <stack>
    using namespace std ;
    #define mem(a) memset(a,0,sizeof(a))
    #define pb push_back
    #define fi first
    #define se second
    #define MP make_pair
    typedef long long ll;
    
    const int N = 100+100;
    const int M = 1000001;
    const int inf = 0x3f3f3f3f;
    const ll MOD = 1000000000;
    
    
    ll a,b,k,len;
    ll vis[100][N][N],dp[100][N][N],d[100];
    void init(int n) {
        len = 1;
        mem(d);
        while(n) d[len++] = n%10,n /= 10;
    
         for(int i = 1;i <= len/2; i++)
            swap(d[i],d[len-i+1]);
    }
    ll solve(ll n) {
        if(n == 0) return 1;
        init(n);
        mem(dp);
        int  p = 0, q = 0;
    
        for(int i=1;i<=len;i++) {
    
            for(int j=0;j<=k;j++)
                for(int t = 0;t <= k; t++) {
                    for(int x = 0;x < 10; x++) {
                        dp[i][(j*10+x)%k][(t+x)%k] += dp[i-1][j][t];
                    }
                }
    
            for(int j = 0; j < d[i]; j++)
                dp[i][(p*10+j)%k][(q+j)%k]++;
    
            p = (p*10+d[i])%k;
            q = (q+d[i])%k;
        }
        if(p == 0 && q == 0) dp[len][0][0]++;
        return dp[len][0][0];
    }
    int main() {
        int T;
        scanf("%d",&T);
        while(T--) {
            scanf("%lld%lld%lld",&a,&b,&k);
            if(k>100) printf("0
    ");
            else 
            printf("%lld
    ",solve(b)-solve(a-1));
        }
        return 0;
    }
    bear
    //meek///#include<bits/stdc++.h>
    #include <cstdio>
    #include <cmath>
    #include <cstring>
    #include <algorithm>
    #include<iostream>
    #include<bitset>
    #include<vector>
    #include <queue>
    #include <map>
    #include <set>
    #include <stack>
    using namespace std ;
    #define mem(a) memset(a,0,sizeof(a))
    #define pb push_back
    #define fi first
    #define se second
    #define MP make_pair
    typedef long long ll;
    
    const int N = 100+100;
    const int M = 1000001;
    const int inf = 0x3f3f3f3f;
    const ll MOD = 1000000000;
    
    
    ll a,b,k;
    ll vis[100][N][N],dp[100][N][N],d[100];
    ll dfs(int dep,int f,int sum,int P) {
        if(dep<0) return sum%k==0&&P%k==0;
        if(f&&vis[dep][sum][P]) return  dp[dep][sum][P];
        if(f) {
            ll& ret = dp[dep][sum][P];
            vis[dep][sum][P] = 1;
            for(int i=0;i<=9;i++) {
                ret += dfs(dep-1,f,(sum*10+i)%k,P+i);
            }
        return ret;
        }
        else {
            ll ret = 0;
            for(int i=0;i<=d[dep];i++) {
                ret +=dfs(dep-1,i<d[dep],(sum*10+i)%k,P+i);
            }
            return ret;
        }
    }
    ll solve(int n) {
        mem(vis),mem(dp);
        int len = 0;
        while(n) d[len++] = n%10,n /= 10;
        return dfs(len-1,0,0,0);
    }
    int main() {
        int T;
        scanf("%d",&T);
        while(T--) {
            scanf("%lld%lld%lld",&a,&b,&k);
            printf("%lld
    ",solve(b)-solve(a-1));
        }
        return 0;
    }
    meek
  • 相关阅读:
    Nginx的编译,和简单的配置问题
    项目课DNS主域名解析服务器(四)
    项目课DHCP服务(三)
    项目课PXE自动装机(二)
    Nginx 详细讲解
    ansible批量管理工具的搭建与简单的操作
    SUID,SGID,SBIT这些到底是什么
    密码截取
    分治和递归的算法实现求数组A[n]中的前k个最大数
    回溯法实现求1n个自然数中r个数的组合
  • 原文地址:https://www.cnblogs.com/zxhl/p/5085364.html
Copyright © 2011-2022 走看看