zoukankan      html  css  js  c++  java
  • UVA 11235 Frequent values RMQ

                                          Frequent values

    You are given a sequence of n integers a1, a2, . . . , an in non-decreasing order. In addition to that, you
    are given several queries consisting of indices i and j (1 ≤ i ≤ j ≤ n). For each query, determine the
    most frequent value among the integers ai
    , . . . , aj.
    Input
    The input consists of several test cases. Each test case starts with a line containing two integers n and
    q (1 ≤ n, q ≤ 100000). The next line contains n integers a1, . . . , an (−100000 ≤ ai ≤ 100000, for each
    i ∈ {1, ..., n}) separated by spaces. You can assume that for each i ∈ {1, . . . , n − 1}: ai ≤ ai+1. The
    following q lines contain one query each, consisting of two integers i and j (1 ≤ i ≤ j ≤ n), which
    indicate the boundary indices for the query.
    The last test case is followed by a line containing a single ‘0’.
    Output
    For each query, print one line with one integer: The number of occurrences of the most frequent value
    within the given range.
    Note: A naive algorithm may not run in time!
    Sample Input
    10 3
    -1 -1 1 1 1 1 3 10 10 10
    2 3
    1 10
    5 10
    0
    Sample Output
    1
    4
    3

    题意:

      给你n个数,q次询问

      每次询问是l,r之间重复最多的数的次数

    题解:

      由于这n个数是升序的,我们将其细分问每个位置上的相同数向左向右延生至最左的位置和最右位置,

      处理了这个,利用RMQ求解,判断最大了

      max(RMQ(righti+1,reftj−1),max(righti−i+1,j−leftj+1))

    #include <iostream>
    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    #include <cmath>
    #include <map>
    using namespace std ;
    typedef long long ll;
    const int  N = 100000 + 10;
    int a[N],x,q,n,dp[N][20],y,l[N],r[N],h[N];;
    void RMQ() {
        for(int i = 1; i <= n; i++) dp[i][0] = r[h[i]] - l[h[i]] + 1;
        for(int i = 1; (1<<i) <= n; i++) {
            for(int j = 1; (j + (1<<i) - 1) <= n; j++) {
                dp[j][i] = max(dp[j][i-1],dp[j + (1<<(i-1))][i-1]);
            }
        }
    }
    int query(int l,int r) {
        if(l == r) return 1;
        else if(l > r) return 0;
        int k = (int) ((log((double)(r - l + 1))) / log(2.0));
        return max(dp[l][k] , dp[r - (1<<k) + 1][k]);
    }
    map<int,int> mp;
    int main() {
        while(scanf("%d%d",&n, &q) == 2 && n) {
            mp.clear();int cnt = 0;
            memset(h,0,sizeof(h));memset(dp,0,sizeof(dp));
            for(int i = 1; i <= n; i++) {
                scanf("%d",&x);
                if(mp[x]) h[i] = cnt, r[cnt] = i, mp[x]++;
                else h[i] = ++ cnt, l[cnt] = i, r[cnt] = i,mp[x] = 1;
            }
            RMQ();
            for(int i = 1; i <= q; i++) {
                scanf("%d%d",&x,&y);
                if(h[x] == h[y]) printf("%d
    ", y - x + 1);
                else
                printf("%d
    ",max(query(r[h[x]] + 1, l[h[y]] - 1), max(r[h[x]] - x + 1, y - l[h[y]] + 1)));
            }
        }
        return 0;
    }
  • 相关阅读:
    USACO第三道题
    uva350 PseudoRandom Numbers
    uva10879 Code Refactoring
    Scrum 冲刺第一篇 晨曦
    WC.exe 晨曦
    [LeetCode 126] 单词梯II(Word Ladder II)
    [LeetCode 129] 根节点到叶子节点数字求和(Sum Root to Leaf Numbers)
    [LeetCode 125] 验证回文(Valid Palindrome)
    [LeetCode 123] 买入与卖出股票的最佳时机III(Best Time to Buy and Sell Stock III)
    [LeetCode 124] 二叉树最大路径和(Binary Tree Maximum Path Sum)
  • 原文地址:https://www.cnblogs.com/zxhl/p/5164694.html
Copyright © 2011-2022 走看看