zoukankan      html  css  js  c++  java
  • UVA 11987 Almost Union-Find 并查集单点修改

                                     Almost Union-Find

    I hope you know the beautiful Union-Find structure. In this problem, you’re to implement something
    similar, but not identical.
    The data structure you need to write is also a collection of disjoint sets, supporting 3 operations:

    1 p q Union the sets containing p and q. If p and q are already in the same set,
    ignore this command

    2 p q Move p to the set containing q. If p and q are already in the same set,
    ignore this command.

    3 p Return the number of elements and the sum of elements in the set containing p.

    Initially, the collection contains n sets: {1}, {2}, {3}, . . . , {n}.、

    input

    There are several test cases. Each test case begins with a line containing two integers n and m
    (1 ≤ n, m ≤ 100,000), the number of integers, and the number of commands. Each of the next m lines
    contains a command. For every operation, 1 ≤ p, q ≤ n. The input is terminated by end-of-file (EOF).

    output

    For each type-3 command, output 2 integers: the number of elements and the sum of elements.
    Explanation
    Initially: {1}, {2}, {3}, {4}, {5}
    Collection after operation 1 1 2: {1,2}, {3}, {4}, {5}
    Collection after operation 2 3 4: {1,2}, {3,4}, {5} (we omit the empty set that is produced when
    taking out 3 from {3})
    Collection after operation 1 3 5: {1,2}, {3,4,5}
    Collection after operation 2 4 1: {1,2,4}, {3,5}

    Sample Input
    5 7
    1 1 2
    2 3 4
    1 3 5
    3 4
    2 4 1
    3 4
    3 3
    Sample Output
    3 12
    3 7
    2 8

     

    题意:

      给你n个点m个操作,

      有三种操作自己看吧

    题解:

      来自深渊小鱼的解答

      此题最难处理的操作就是将一个单点改变集合,而普通的并查集是不支持这种操作的。

          当结点p是叶子结点的时候,直接pa[p] = root(q)是可以的,

      p没有子结点,这个操作对其它结点不会造成任何影响,

      而当p是父结点的时候这种操作会破坏子节点的路径,因此必须保留原来的路径。

      我们希望pa[p] = root(q)的同时又保留原来的路径,那么只需要在点上做一个标记,

      如果这个点被标记,就沿着新的路径寻找。

      此时在修改操作的时候这个点一定是叶子结点,所以可以直接pa[p] = root(q),

      而原来的点则变成一个虚点用来保留了原来的路径。

      改变集合的操作以及查询都只涉及到单点,这个标记只影响这个点,在二次以及以上的寻找还是要按照原来的路径。

    #include <iostream>
    #include <cstdio>
    #include <cmath>
    #include <cstring>
    #include <algorithm>
    #include<vector>
    #include<queue>
    using namespace std;
    const int N = 1e5+20, M = 30005, mod = 1e9 + 7, inf = 0x3f3f3f3f;
    typedef long long ll;
    
    int fa[N],num[N],sum[N],fg[N],n,m,fa2[N];
    int finds(int x,int d) {
        if(fg[x]&&d) return finds(fa2[x],0);
        else return x==fa[x]?x:fa[x]=finds(fa[x],0);
    }
    int main() {
        while(scanf("%d%d",&n,&m)!=EOF) {
            for(int i=1;i<=n;i++) fa[i] = i,num[i] = 1,fg[i] = 0, sum[i] = i;
            for(int i=1;i<=m;i++) {
                int x,a,b,y;
               scanf("%d",&x);
               if(x==3) {
                    scanf("%d",&y);
                    printf("%d %d
    ",num[finds(y,1)], sum[finds(y,1)]);
               }
               else {
                scanf("%d%d",&a,&b);
                if(x==1) {
                    int fx = finds(a,1);
                    int fy = finds(b,1);
                    if(fx==fy) continue;
                    fa[fx] = fy;
                    num[fy] += num[fx];
                    sum[fy] += sum[fx];
                }
                else {
                    int fx = finds(a,1);
                    int fy = finds(b,1);
                    if(fx == fy) continue;
                    num[fx]--;
                    sum[fx]-=a;
                    num[fy]++;
                    sum[fy]+=a;
                    fg[a]  = 1;
                    fa2[a] = fy;
                }
               }
            }
        }
        return 0;
    }
  • 相关阅读:
    如何作需求
    AS400如何将Spooled File 拷贝到源物理文件
    AS400 批量FTP
    Oracle和db2/400的差别
    CL内建函数
    visio如何扩大画布的大小
    如何把C/S架构较为平滑的切换到SOA架构
    关于DataTable里大批量查找的更快速的方法
    c#键值对容器
    什么是委托
  • 原文地址:https://www.cnblogs.com/zxhl/p/5418599.html
Copyright © 2011-2022 走看看