zoukankan      html  css  js  c++  java
  • 高斯消元

    高斯消元法,是线性代数中的一个算法,可用来求解线性方程组,并可以求出矩阵的秩,以及求出可逆方阵的逆矩阵。
    高斯消元法的原理是:
    若用初等行变换将增广矩阵 化为 ,则AX = B与CX = D是同解方程组。
    所以我们可以用初等行变换把增广矩阵转换为行阶梯阵,然后回代求出方程的解。

    以上是线性代数课的回顾,下面来说说高斯消元法在编程中的应用。

    首先,先介绍程序中高斯消元法的步骤:
    (我们设方程组中方程的个数为equ,变元的个数为var,注意:一般情况下是n个方程,n个变元,但是有些题目就故意让方程数与变元数不同)

    1. 把方程组转换成增广矩阵。

    2. 利用初等行变换来把增广矩阵转换成行阶梯阵。
    枚举k从0到equ – 1,当前处理的列为col(初始为0) ,每次找第k行以下(包括第k行),col列中元素绝对值最大的列与第k行交换。如果col列中的元素全为0,那么则处理col + 1列,k不变。

    3. 转换为行阶梯阵,判断解的情况。

    ① 无解
    当方程中出现(0, 0, …, 0, a)的形式,且a != 0时,说明是无解的。

    ② 唯一解
    条件是k = equ,即行阶梯阵形成了严格的上三角阵。利用回代逐一求出解集。

    ③ 无穷解。
    条件是k < equ,即不能形成严格的上三角形,自由变元的个数即为equ – k,但有些题目要求判断哪些变元是不缺定的。
        这里单独介绍下这种解法:
    首先,自由变元有var - k个,即不确定的变元至少有var - k个。我们先把所有的变元视为不确定的。在每个方程中判断不确定变元的个数,如果大于1个,则该方程无法求解。如果只有1个变元,那么该变元即可求出,即为确定变元。

    以上介绍的是求解整数线性方程组的求法,复杂度是O(n3)。浮点数线性方程组的求法类似,但是要在判断是否为0时,加入EPS,以消除精度问题。


    下面讲解几道OJ上的高斯消元法求解线性方程组的题目:

    POJ 1222 EXTENDED LIGHTS OUT
    http://acm.pku.edu.cn/JudgeOnline/problem?id=1222
    POJ 1681 Painter's Problem
    http://acm.pku.edu.cn/JudgeOnline/problem?id=1681
    POJ 1753 Flip Game
    http://acm.pku.edu.cn/JudgeOnline/problem?id=1753
    POJ 1830 开关问题
    http://acm.pku.edu.cn/JudgeOnline/problem?id=1830

    POJ 3185 The Water Bowls

    http://acm.pku.edu.cn/JudgeOnline/problem?id=3185
    开关窗户,开关灯问题,很典型的求解线性方程组的问题。方程数和变量数均为行数*列数,直接套模板求解即可。但是,当出现无穷解时,需要枚举解的情况,因为无法判断哪种解是题目要求最优的。

    POJ 2947 Widget Factory
    http://acm.pku.edu.cn/JudgeOnline/problem?id=2947
    求解同余方程组问题。与一般求解线性方程组的问题类似,只要在求解过程中加入取余即可。
    注意:当方程组唯一解时,求解过程中要保证解在[3, 9]之间。

    POJ 1166 The Clocks
    http://acm.pku.edu.cn/JudgeOnline/problem?id=1166
    经典的BFS问题,有各种解法,也可以用逆矩阵进行矩阵相乘。
    但是这道题用高斯消元法解决好像有些问题(困扰了我N天...持续困扰中...),由于周期4不是素数,故在求解过程中不能进行取余(因为取余可能导致解集变大),但最后求解集时,还是需要进行取余操作,那么就不能保证最后求出的解是正确的...在discuss里提问了好几天也没人回答...希望哪位路过的大牛指点下~~

    POJ 2065 SETI
    http://acm.pku.edu.cn/JudgeOnline/problem?id=2065
    同样是求解同余方程组问题,由于题目中的p是素数,可以直接在求解时取余,套用模板求解即可。(虽然AC的人很少,但它还是比较水的一道题,)

    POJ 1487 Single-Player Games
    http://acm.pku.edu.cn/JudgeOnline/problem?id=1487
    很麻烦的一道题目...题目中的叙述貌似用到了编译原理中的词法定义(看了就给人不想做的感觉...)
    解方程组的思想还是很好看出来了(前提是通读题目不下5遍...),但如果把树的字符串表达式转换成方程组是个难点,我是用栈 + 递归的做法分解的。首先用栈的思想求出该结点的孩子数,然后递归分别求解各个孩子。
    这题解方程组也与众不同...首先是求解浮点数方程组,要注意精度问题,然后又询问不确定的变元,按前面说的方法求解。
    一顿折腾后,这题居然写了6000+B...而且囧的是巨人C++ WA,G++ AC,可能还是精度的问题吧...看这题目,看这代码,就没有改的欲望...

    hdu OJ 2449
    http://acm.hdu.edu.cn/showproblem.php?pid=2449
    哈尔滨现场赛的一道纯高斯题,当时鹤牛敲了1个多小时...主要就是写一个分数类,套个高精模板(偷懒点就Java...)搞定~~
    注意下0和负数时的输出即可。

    fze OJ 1704
    http://acm.fzu.edu.cn/problem.php?pid=1704
    福大月赛的一道题目,还是经典的开关问题,但是方程数和变元数不同(考验模板的时候到了~~),最后要求增广阵的阶,要用到高精度~~

    Sgu 275 To xor or not to xor
    http://acm.sgu.ru/problem.php?contest=0&problem=275
    题解:
    http://hi.baidu.com/czyuan%5Facm/blog/item/be3403d32549633d970a16ee.html

    这里提供下自己写的还算满意的求解整数线性方程组的模板(浮点数类似,就不提供了)~~

    详解模板

    /* 用于求整数解得方程组. */
    #include <iostream>
    #include <string>
    #include <cmath>
    using namespace std;
    const int maxn = 105;
    int equ, var; // 有equ个方程,var个变元。增广阵行数为equ, 分别为0到equ - 1,列数为var + 1,分别为0到var.
    int a[maxn][maxn];
    int x[maxn]; // 解集.
    bool free_x[maxn]; // 判断是否是不确定的变元.
    int free_num;
    void Debug(void)
    {
        int i, j;
        for (i = 0; i < equ; i++)
        {
            for (j = 0; j < var + 1; j++)
            {
                cout << a[i][j] << " ";
            }
            cout << endl;
        }
        cout << endl;
    }
    inline int gcd(int a, int b)
    {
        int t;
        while (b != 0)
        {
            t = b;
            b = a % b;
            a = t;
        }
        return a;
    }
    inline int lcm(int a, int b)
    {
        return a * b / gcd(a, b);
    }
    // 高斯消元法解方程组(Gauss-Jordan elimination).(-2表示有浮点数解,但无整数解,-1表示无解,0表示唯一解,大于0表示无穷解,并返回自由变元的个数)
    int Gauss(void)
    {
        int i, j, k;
        int max_r; // 当前这列绝对值最大的行.
    int col; // 当前处理的列.
        int ta, tb;
        int LCM;
        int temp;
        int free_x_num;
        int free_index;
        // 转换为阶梯阵.
        col = 0; // 当前处理的列.
        for (k = 0; k < equ && col < var; k++, col++)
        { // 枚举当前处理的行.
            // 找到该col列元素绝对值最大的那行与第k行交换.(为了在除法时减小误差)
            max_r = k;
            for (i = k + 1; i < equ; i++)
            {
                if (abs(a[i][col]) > abs(a[max_r][col])) max_r = i;
            }
            if (max_r != k)
            { // 与第k行交换.
                for (j = k; j < var + 1; j++) swap(a[k][j], a[max_r][j]);
            }
            if (a[k][col] == 0)
            { // 说明该col列第k行以下全是0了,则处理当前行的下一列.
                k--; continue;
            }
            for (i = k + 1; i < equ; i++)
            { // 枚举要删去的行.
                if (a[i][col] != 0)
        {
                    LCM = lcm(abs(a[i][col]), abs(a[k][col]));
                    ta = LCM / abs(a[i][col]), tb = LCM / abs(a[k][col]);
                    if (a[i][col] * a[k][col] < 0) tb = -tb; // 异号的情况是两个数相加.
                    for (j = col; j < var + 1; j++)
                    {
                        a[i][j] = a[i][j] * ta - a[k][j] * tb;
                    }
        }
            }
        }
        Debug();
        // 1. 无解的情况: 化简的增广阵中存在(0, 0, ..., a)这样的行(a != 0).
        for (i = k; i < equ; i++)
        { // 对于无穷解来说,如果要判断哪些是自由变元,那么初等行变换中的交换就会影响,则要记录交换.
            if (a[i][col] != 0) return -1;
        }
        // 2. 无穷解的情况: 在var * (var + 1)的增广阵中出现(0, 0, ..., 0)这样的行,即说明没有形成严格的上三角阵.
        // 且出现的行数即为自由变元的个数.
        if (k < var)
        {
            // 首先,自由变元有var - k个,即不确定的变元至少有var - k个.
            for (i = k - 1; i >= 0; i--)
            {
                // 第i行一定不会是(0, 0, ..., 0)的情况,因为这样的行是在第k行到第equ行.
                // 同样,第i行一定不会是(0, 0, ..., a), a != 0的情况,这样的无解的.
                free_x_num = 0; // 用于判断该行中的不确定的变元的个数,如果超过1个,则无法求解,它们仍然为不确定的变元.
                for (j = 0; j < var; j++)
                {
                    if (a[i][j] != 0 && free_x[j]) free_x_num++, free_index = j;
                }
                if (free_x_num > 1) continue; // 无法求解出确定的变元.
                // 说明就只有一个不确定的变元free_index,那么可以求解出该变元,且该变元是确定的.
                temp = a[i][var];
                for (j = 0; j < var; j++)
                {
                    if (a[i][j] != 0 && j != free_index) temp -= a[i][j] * x[j];
                }
                x[free_index] = temp / a[i][free_index]; // 求出该变元.
                free_x[free_index] = 0; // 该变元是确定的.
            }
            return var - k; // 自由变元有var - k个.
        }
        // 3. 唯一解的情况: 在var * (var + 1)的增广阵中形成严格的上三角阵.
        // 计算出Xn-1, Xn-2 ... X0.
        for (i = var - 1; i >= 0; i--)
        {
            temp = a[i][var];
            for (j = i + 1; j < var; j++)
            {
                if (a[i][j] != 0) temp -= a[i][j] * x[j];
            }
            if (temp % a[i][i] != 0) return -2; // 说明有浮点数解,但无整数解.
            x[i] = temp / a[i][i];
        }
    return 0;
    }
    int main(void)
    {
        freopen("Input.txt", "r", stdin);
        int i, j;
        while (scanf("%d %d", &equ, &var) != EOF)
        {
            memset(a, 0, sizeof(a));
       memset(x, 0, sizeof(x));
       memset(free_x, 1, sizeof(free_x)); // 一开始全是不确定的变元.
            for (i = 0; i < equ; i++)
            {
                for (j = 0; j < var + 1; j++)
                {
                    scanf("%d", &a[i][j]);
                }
            }
    //        Debug();
            free_num = Gauss();
            if (free_num == -1) printf("无解!
    ");
       else if (free_num == -2) printf("有浮点数解,无整数解!
    ");
            else if (free_num > 0)
            {
                printf("无穷多解! 自由变元个数为%d
    ", free_num);
                for (i = 0; i < var; i++)
                {
                    if (free_x[i]) printf("x%d 是不确定的
    ", i + 1);
                    else printf("x%d: %d
    ", i + 1, x[i]);
                }
            }
            else
            {
                for (i = 0; i < var; i++)
                {
                    printf("x%d: %d
    ", i + 1, x[i]);
                }
            }
            printf("
    ");
        }
        return 0;
    }
  • 相关阅读:
    MPSOC之5——开发流程BOOT.BIN
    MPSOC之6——开发流程linux编译
    MPSOC之1——overview、开发板、工具[转载]
    IC设计的前端和后端(转)
    [转载]深入理解JavaScript系列 --汤姆大叔
    xml的特殊字符
    JavaScript 对象
    knockoutjs关于ko.bindingHandlers的updata订阅
    单元测试 unittest 读取文件 (CSV, XML)
    单元测试 unittest 将断言结果生成测试报告
  • 原文地址:https://www.cnblogs.com/zxhl/p/5426922.html
Copyright © 2011-2022 走看看