zoukankan      html  css  js  c++  java
  • HDU 4374 One hundred layer DP的单调队列优化

    One hundred layer

    Problem Description
     
    Now there is a game called the new man down 100th floor. The rules of this game is:
      1.  At first you are at the 1st floor. And the floor moves up. Of course you can choose which part you will stay in the first time.
      2.  Every floor is divided into M parts. You can only walk in a direction (left or right). And you can jump to the next floor in any part, however if you are now in part “y”, you can only jump to part “y” in the next floor! (1<=y<=M)
      3.  There are jags on the ceils, so you can only move at most T parts each floor.
      4.  Each part has a score. And the score is the sum of the parts’ score sum you passed by.
    Now we want to know after you get the 100th floor, what’s the highest score you can get.
     
    Input
     
    The first line of each case has four integer N, M, X, T(1<=N<=100, 1<=M<=10000, 1<=X, T<=M). N indicates the number of layers; M indicates the number of parts. At first you are in the X-th part. You can move at most T parts in every floor in only one direction.
    Followed N lines, each line has M integers indicating the score. (-500<=score<=500)
     
    Output
     
    Output the highest score you can get.
     
    Sample Input
     
    3 3 2 1 7 8 1 4 5 6 1 2 3
     
    Sample Output
     
    29
     

    题意:

      给你n*m的图,起始位置在第一行的第x个位置,现在你可以选择一个方向至多走T个位置然后走向下一行,直到第n行

      路过的格子里的值总和最大是多少

    题解:

      首先想到dp[i][j]表示到达当前(i,j)格子的最大答案,那么最后答案显然了

      思考如何得到(i,j)的最优答案

      他可以是从左边上一层走下来再向右走到j位置,且走过不超过T,也可以是右边

      对于左边:dp[i][j] = dp[i-1][k] - sum[i][k-1] + sum[i][j];

      dp[i-1][k] - sum[i][k-1]这一块是上一层,和当前层没有任何关系,我们可以预处理啊

      那么我们维护一个大小T的单调队列,左边右边扫一波就好了

    #include <iostream>
    #include <algorithm>
    #include <cstdio>
    #include <cstring>
    #include <cmath>
    #include<queue>
    using namespace std;
    const int N = 120, M = 1e4+20, mod = 1000000007,inf = 2e9;
    typedef long long ll;
    
    int n,m,x,t,a[N][M],sum[N][M],dp[N][M];
    int main() {
    
        while(scanf("%d%d%d%d",&n,&m,&x,&t)!=EOF) {
            for(int i=1;i<=n;i++)
                for(int j=1;j<=m;j++) scanf("%d",&a[i][j]);
            for(int i=1;i<=n;i++) {
                sum[i][0] = 0;
                for(int j=1;j<=m;j++) sum[i][j] = sum[i][j-1] + a[i][j];
            }
            for(int i=1;i<=n;i++) for(int j=1;j<=m;j++) dp[i][j] = -inf;
            for(int i=x;i>=1&&i>=x-t;i--)
                dp[1][i] = sum[1][x] - sum[1][i-1];
            for(int i=x;i<=m&&i<=x+t;i++)
                dp[1][i] = sum[1][i] - sum[1][x-1];
    
            deque<int >q;
            for(int i=2;i<=n;i++) {
                //从左向右
    
                while(!q.empty()) q.pop_back();
                dp[i][1] = dp[i-1][1] + a[i][1];
                q.push_back(1);
                for(int j=2;j<=m;j++) {
                    while(!q.empty()&&j-q.front()>t) q.pop_front();
                    int now = dp[i-1][j] - sum[i][j-1];
                    while(!q.empty()&&dp[i-1][q.back()]-sum[i][q.back()-1]<=now) q.pop_back();
                    q.push_back(j);
                    int  pos = q.front();
                    dp[i][j] = max(dp[i][j],dp[i-1][pos]-sum[i][pos-1]+sum[i][j]);
                }
    
                while(!q.empty()) q.pop_back();
                q.push_back(m);
                dp[i][m] = max(dp[i][m],dp[i-1][m]+a[i][m]);
    
                for(int j=m-1;j>=1;j--) {
                    while(!q.empty()&&q.front()-j>t) q.pop_front();
                    int now = dp[i-1][j] + sum[i][j];
                    while(!q.empty()&&dp[i-1][q.back()]+sum[i][q.back()]<=now) q.pop_back();
                    q.push_back(j);
                    int pos = q.front();
                    dp[i][j] = max(dp[i][j],dp[i-1][pos]+sum[i][pos]-sum[i][j-1]);
                }
    
            }
            int ans = -inf;
            for(int i=1;i<=m;i++) ans = max(ans,dp[n][i]);
            printf("%d
    ",ans);
        }
        return 0;
    }
  • 相关阅读:
    Atitti  css   transition Animation differ区别
    Atitit 游戏引擎物理系统(1)爆炸效果
    Atitit.rsa密钥生成器的attilax总结
    新特性AAtitti css3 新特性attilax总结titti css
    Atitit 异常的实现原理 与用户业务异常
    Atitit.uke 团队建设的组织与运营之道attilax总结
    atitit 业务 触发器原理. 与事件原理 docx
    Atitit 基于dom的游戏引擎
    Atitit 团队建设的知识管理
    Javascript判断页面刷新或关闭的方法(转)
  • 原文地址:https://www.cnblogs.com/zxhl/p/5525360.html
Copyright © 2011-2022 走看看