zoukankan      html  css  js  c++  java
  • Codeforces Round #360 (Div. 2) E. The Values You Can Make DP

    E. The Values You Can Make
     
     

    Pari wants to buy an expensive chocolate from Arya. She has n coins, the value of the i-th coin is ci. The price of the chocolate is k, so Pari will take a subset of her coins with sum equal to k and give it to Arya.

    Looking at her coins, a question came to her mind: after giving the coins to Arya, what values does Arya can make with them? She is jealous and she doesn't want Arya to make a lot of values. So she wants to know all the values x, such that Arya will be able to make xusing some subset of coins with the sum k.

    Formally, Pari wants to know the values x such that there exists a subset of coins with the sum k such that some subset of this subset has the sum x, i.e. there is exists some way to pay for the chocolate, such that Arya will be able to make the sum x using these coins.

    Input
     

    The first line contains two integers n and k (1  ≤  n, k  ≤  500) — the number of coins and the price of the chocolate, respectively.

    Next line will contain n integers c1, c2, ..., cn (1 ≤ ci ≤ 500) — the values of Pari's coins.

    It's guaranteed that one can make value k using these coins.

    Output
     

    First line of the output must contain a single integer q— the number of suitable values x. Then print q integers in ascending order — the values that Arya can make for some subset of coins of Pari that pays for the chocolate.

    Examples
    input
     
    6 18
    5 6 1 10 12 2

    output
     
    16
    0 1 2 3 5 6 7 8 10 11 12 13 15 16 17 18

    题意:
     
      给你n个数,k,问你这n个数和为k的集合,其子集和有哪些
     
    题解:
      设定dp[i][j]表示集合和是i,其子集j是否出现
      那么转移方程 当dp[i][j]为1,就有      dp[i+a[now]]][j]=dp[i+a[now]]][j+a[now]]];
    #include<bits/stdc++.h>
    using namespace std;
    typedef long long ll;
    const int  N = 510+10, inf = 2e9, mod = 1e9+7;
    vector<int >G;
    int dp[N][N],n,k,a[N];
    int main(){
        scanf("%d%d",&n,&k);
        for(int i=1;i<=n;i++) scanf("%d",&a[i]);
        dp[0][0]=1;//和为i,j是否出现过
        for(int i=1;i<=n;i++)
        {
            for(int j=k-a[i];j>=0;j--)
            {
                for(int x=0;x<=k;x++)
                {
                    if(dp[j][x])
                        dp[j+a[i]][x] = 1, dp[j+a[i]][x+a[i]]=1;
                }
            }
        }
        for(int i=0;i<=k;i++)
        {
            if(dp[k][i]) G.push_back(i);
        }
        printf("%d
    ",G.size());
        for(int i=0;i<G.size();i++) printf("%d ",G[i]);
        return 0;
    }
  • 相关阅读:
    重要网址(工具的使用)
    navicat的使用(测试库和正式库同步)以及用plsql改表字段属性
    linux
    linux一些基本命令
    LINUX的一些基本概念和操作
    LINUX简介
    Redis系统管理
    Redis之数据类型
    Redis的简介与安装
    论文阅读笔记(二十七)【AAAI2019】:A Bottom-Up Clustering Approach to Unsupervised Person Re-Identification
  • 原文地址:https://www.cnblogs.com/zxhl/p/5631182.html
Copyright © 2011-2022 走看看