zoukankan      html  css  js  c++  java
  • POJ 1947 Rebuilding Roads 树形DP

    Rebuilding Roads
     

    Description

    The cows have reconstructed Farmer John's farm, with its N barns (1 <= N <= 150, number 1..N) after the terrible earthquake last May. The cows didn't have time to rebuild any extra roads, so now there is exactly one way to get from any given barn to any other barn. Thus, the farm transportation system can be represented as a tree. 

    Farmer John wants to know how much damage another earthquake could do. He wants to know the minimum number of roads whose destruction would isolate a subtree of exactly P (1 <= P <= N) barns from the rest of the barns.

    Input

    * Line 1: Two integers, N and P 

    * Lines 2..N: N-1 lines, each with two integers I and J. Node I is node J's parent in the tree of roads. 

    Output

    A single line containing the integer that is the minimum number of roads that need to be destroyed for a subtree of P nodes to be isolated. 

    Sample Input

    11 6
    1 2
    1 3
    1 4
    1 5
    2 6
    2 7
    2 8
    4 9
    4 10
    4 11
    

    Sample Output

    2

    题意:

      给你一个n点的树和一个p

      问你通过删除一些边得到一个至少含有一个子树节点数为p的最少删除数

    题解:

      设定dp[u][x]表示以u为根节点剩余x个点的最少删除边数

      那么这就是背包问题了

      dp[u][i] = min(dp[v][k]+dp[u][i-k]-1,dp[u][i]);

      u表示根节点,v表示儿子之一

    #include <iostream>
    #include <cstdio>
    #include <cmath>
    #include <cstring>
    #include<vector>
    #include <algorithm>
    using namespace std;
    const int N = 2e2+20, M = 1e2+10, mod = 1e9+7, inf = 1e9+1000;
    typedef long long ll;
    
    int siz[N],n,p,dp[N][N];
    vector<int > G[N];
    void dfs(int u,int fa) {
        siz[u] = 1;
        int totson = G[u].size();
        for(int i=0;i<totson;i++) {
            int to = G[u][i];
            if(to == fa) continue;
            dfs(to,u);
            siz[u] += siz[to];
        }
        dp[u][1] = totson - 1;if(u == 1) dp[u][1]++;
        for(int j=0;j<totson;j++) {
            int v = G[u][j];
            if(v == fa) continue;
            for(int i=siz[u];i>=1;i--) {
                for(int k=1;k<i && k<=siz[v];k++) {
                    dp[u][i] = min(dp[v][k]+dp[u][i-k]-1,dp[u][i]);
                }
            }
        }
    }
    int main()
    {
        scanf("%d%d",&n,&p);
        for(int i=1;i<n;i++) {
            int a,b;
            scanf("%d%d",&a,&b);
            G[a].push_back(b);
            G[b].push_back(a);
        }
        for(int i=0;i<=n;i++) for(int j=0;j<=p;j++) dp[i][j]=inf;
        dfs(1,-1);
        int ans = dp[1][p];
        for(int i=2;i<=n;i++) {
            ans = min(ans, dp[i][p]+1);
        }
        cout<<ans<<endl;
    }
  • 相关阅读:
    检测后缀表达式的合法性
    对表达式进行空白符预处理
    字符串替换
    中缀表达式的计算
    Linux shell编程
    Linux常用shell
    [转载]shell脚本编写规范
    [转载]Linux文件类型
    Linux的进程
    Linux进入命令行模式
  • 原文地址:https://www.cnblogs.com/zxhl/p/5688642.html
Copyright © 2011-2022 走看看