zoukankan      html  css  js  c++  java
  • URAL 1966 Cycling Roads 点在线段上、线段是否相交、并查集

    F - Cycling Roads
     
     

    Description

     

    When Vova was in Shenzhen, he rented a bike and spent most of the time cycling around the city. Vova was approaching one of the city parks when he noticed the park plan hanging opposite the central entrance. The plan had several marble statues marked on it. One of such statues stood right there, by the park entrance. Vova wanted to ride in the park on the bike and take photos of all statues. The park territory has multiple bidirectional cycling roads. Each cycling road starts and ends at a marble statue and can be represented as a segment on the plane. If two cycling roads share a common point, then Vova can turn on this point from one road to the other. If the statue stands right on the road, it doesn't interfere with the traffic in any way and can be photoed from the road.
    Can Vova get to all statues in the park riding his bike along cycling roads only?
     

    Input

     

    The first line contains integers n and m that are the number of statues and cycling roads in the park (1 ≤ m < n ≤ 200) . Then n lines follow, each of them contains the coordinates of one statue on the park plan. The coordinates are integers, their absolute values don't exceed 30 000. Any two statues have distinct coordinates. Each of the following m lines contains two distinct integers from 1 to n that are the numbers of the statues that have a cycling road between them.
     

    Output

     

    Print “YES” if Vova can get from the park entrance to all the park statues, moving along cycling roads only, and “NO” otherwise.

    Sample Input

    inputoutput
    4 2
    0 0
    1 0
    1 1
    0 1
    1 3
    4 2
    
    YES

    题意:

      给你n点

      给你m条直线

      问你所有点是否相连

    题解:

      点在线段上、线段是否相交板子来判断

      吧相连的点加入集合

      最后判断所有点是否都在一个集合里边即可

    #include <iostream>
    #include <cstdio>
    #include <cmath>
    #include <cstring>
    #include <vector>
    #include <algorithm>
    using namespace std;
    const int N = 5e4+20, M = 1e2+10, mod = 1e9+7, inf = 1e9+1000;
    typedef long long ll;
    const double INF  = 1E200;
    const double EP  = 1E-10;
    const int  MAXV = 30000;
    const double PI  = 3.14159265;
    struct POINT
    {
     double x;
     double y;
     POINT(double a=0, double b=0) { x=a; y=b;} //constructor
     POINT operator - (const POINT &b) const {
        return POINT(x - b.x , y - b.y);
     }
      double operator ^ (const POINT &b) const {
        return x*b.y - y*b.x;
     }
    };
    struct LINE
    {
     POINT s;
     POINT e;
     LINE(POINT a, POINT b) { s=a; e=b;}
     LINE() { }
    };
    int sgn(double x) {if(fabs(x) < EP)return 0;if(x < 0) return  -1;else return 1;}
    bool inter(LINE l1,LINE l2) {
        return
        max(l1.s.x,l1.e.x) >= min(l2.s.x,l2.e.x) &&
        max(l2.s.x,l2.e.x) >= min(l1.s.x,l1.e.x) &&
        max(l1.s.y,l1.e.y) >= min(l2.s.y,l2.e.y) &&
        max(l2.s.y,l2.e.y) >= min(l1.s.y,l1.e.y) &&
        sgn((l2.s-l1.e) ^ (l1.s - l1.e))*sgn((l2.e-l1.e) ^ (l1.s-l1.e)) <= 0 &&
        sgn((l1.s-l2.e) ^ (l2.s - l2.e))*sgn((l1.e-l2.e) ^ (l2.s-l2.e)) <= 0;
    }
    bool onseg(POINT P , LINE L) {
        return
        sgn((L.s-P)^(L.e-P)) == 0 &&
        sgn((P.x - L.s.x) * (P.x - L.e.x)) <= 0 &&
        sgn((P.y - L.s.y) * (P.y - L.e.y)) <= 0;
    }
    //intersection
    POINT p[N];
    LINE dg[N];
    int n,m,posa[N],posb[N],fa[N],cnt,vis[N];
    
    int finds(int x) {return x==fa[x]?x:fa[x]=finds(fa[x]);}
    void unions(int x,int y) {
        int fx = finds(x);
        int fy = finds(y);
        if(fx != fy) fa[fx]  = fy;
    }
    int main()
    {
        scanf("%d%d",&n,&m);
    
        for(int i=1;i<=n;i++) fa[i] = i;
    
        for(int i=1;i<=n;i++) {
            double x,y;
            scanf("%lf%lf",&x,&y);
            p[i] = (POINT) {x,y};
        }
        for(int i=1;i<=m;i++) {
            scanf("%d%d",&posa[i],&posb[i]);
            unions(posa[i],posb[i]);
            dg[i] = (LINE) {p[posa[i]],p[posb[i]]};
        }
    //点在线段上
         for(int i=1;i<=n;i++) {
            for(int j=1;j<=m;j++) {
                if(onseg(p[i],dg[j])) {
                   unions(i,posa[j]);
                   unions(i,posb[j]);
                }
            }
        }
    
        POINT pp ;//线段交点
        for(int i=1;i<=m;i++) {
            for(int j=1;j<=m;j++) {
                if(inter(dg[i],dg[j])) {
                    unions(posa[i],posa[j]);
                    unions(posa[i],posb[j]);
                    unions(posb[i],posa[j]);
                    unions(posb[i],posb[j]);
                }
            }
        }
    
    
    
        int all = 1;
        int fi = finds(1);
        for(int i=1;i<=n;i++) {
            if(finds(i)!=fi) {
                puts("NO");return 0;
            }
        }
        puts("YES");
    
    }
  • 相关阅读:
    麦子学院
    iOS开发系列--地图与定位
    iOS开发多线程篇—线程间的通信
    iOS开发多线程篇—创建线程
    iOS开发多线程篇—多线程简单介绍
    iOS开发网络篇—NSURLConnection基本使用
    iOS开发网络篇—GET请求和POST请求
    iOS开发网络篇—HTTP协议
    用CocoaPods做iOS程序的依赖管理
    新手不了解Xcode和mac系统可能犯得错误和我的建议
  • 原文地址:https://www.cnblogs.com/zxhl/p/5696879.html
Copyright © 2011-2022 走看看