zoukankan      html  css  js  c++  java
  • HDU 5791 Two DP

    Two

     

    Problem Description
     
    Alice gets two sequences A and B. A easy problem comes. How many pair of sequence A' and sequence B' are same. For example, {1,2} and {1,2} are same. {1,2,4} and {1,4,2} are not same. A' is a subsequence of A. B' is a subsequence of B. The subsequnce can be not continuous. For example, {1,1,2} has 7 subsequences {1},{1},{2},{1,1},{1,2},{1,2},{1,1,2}. The answer can be very large. Output the answer mod 1000000007.
     
    Input
     
    The input contains multiple test cases.

    For each test case, the first line cantains two integers N,M(1N,M1000). The next line contains N integers. The next line followed M integers. All integers are between 1 and 1000.
     
    Output
     
    For each test case, output the answer mod 1000000007.
     
    Sample Input
     
    3 2 1 2 3 2 1 3 2 1 2 3 1 2
     
    Sample Output
     
    2 3
     

    题意:

      给你两个数组

      问你有多少对公共子序列

    题解:

      设定dp[i][j] 表示以i结尾 j结尾的子序列的 答案数

      n^2的转移

       假设当前为 a[i] == b[j] , 那么它可以继承的 就是 所有 的 i,j组合 +1 

       a[i] != b[j] 则 当前dp[i][j] = 0 咯

      第一中继承 只需要利用前缀 优化就行

      最后统计答案的话 就是sum[n][m]咯

    #include<iostream>
    #include<cstring>
    #include<cstdio>
    #include<cmath>
    #include<algorithm>
    using namespace std;
    const int N = 1e3+10, M = 2e2+11, inf = 2e9, mod = 1e9+7;
    typedef long long ll;
    
    ll dp[N][N],sum[N][N],ans = 0;
    int a[N],b[N],n,m;
    int main()
    {
        while (scanf("%d%d", &n, &m)!=EOF) {
            for (int i=1;i<=n;i++) scanf("%d", &a[i]);
            for (int i=1;i<=m;i++) scanf("%d", &b[i]);
            memset(dp,0,sizeof(dp));
            memset(sum,0,sizeof(sum));
            for (int i=1;i<=n;i++)
                for (int j=1;j<=m;j++)
                if (a[i]==b[j]) {
                        
                    dp[i][j]=(sum[i-1][j-1]+1)%mod;
                    
                    sum[i][j]=(-sum[i-1][j-1]+dp[i][j]%mod+sum[i-1][j]%mod+sum[i][j-1])%mod;
                
                } else sum[i][j]=(-sum[i-1][j-1]%mod+sum[i-1][j]%mod+sum[i][j-1])%mod;
            ans=0;
            for (int i=1;i<=n;i++)
                for (int j=1;j<=m;j++) ans=(ans+dp[i][j])%mod;
            printf("%I64d
    ", (ans+mod)%mod);
        }
        return 0;
    }

       

  • 相关阅读:
    HTML基础
    JavaScript基础
    J2EE技术(六)——JSP
    2011.2—至今年度总结
    J2EE技术(二)——JDBC
    DRP项目总结(一)——项目简介
    CSS基础
    J2EE技术(五)——EJB
    J2EE技术(三)——JMS
    J2EE技术(四)——JavaMail
  • 原文地址:https://www.cnblogs.com/zxhl/p/5734144.html
Copyright © 2011-2022 走看看