zoukankan      html  css  js  c++  java
  • POJ 3185 The Water Bowls 高斯消元

    The Water Bowls
     

    Description

    The cows have a line of 20 water bowls from which they drink. The bowls can be either right-side-up (properly oriented to serve refreshing cool water) or upside-down (a position which holds no water). They want all 20 water bowls to be right-side-up and thus use their wide snouts to flip bowls. 

    Their snouts, though, are so wide that they flip not only one bowl but also the bowls on either side of that bowl (a total of three or -- in the case of either end bowl -- two bowls). 

    Given the initial state of the bowls (1=undrinkable, 0=drinkable -- it even looks like a bowl), what is the minimum number of bowl flips necessary to turn all the bowls right-side-up?

    Input

    Line 1: A single line with 20 space-separated integers

    Output

    Line 1: The minimum number of bowl flips necessary to flip all the bowls right-side-up (i.e., to 0). For the inputs given, it will always be possible to find some combination of flips that will manipulate the bowls to 20 0's.

    Sample Input

    0 0 1 1 1 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0

    Sample Output

    3

    Hint

    Explanation of the sample: 

    Flip bowls 4, 9, and 11 to make them all drinkable: 
    0 0 1 1 1 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0 [initial state] 
    0 0 0 0 0 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0 [after flipping bowl 4] 
    0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 [after flipping bowl 9] 
    0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 [after flipping bowl 11]
    #include<iostream>
    #include<algorithm>
    #include<cstdio>
    #include<cstring>
    #include<cmath>
    #include<vector>
    using namespace std;
    
    //#pragma comment(linker, "/STACK:102400000,102400000")
    #define ls i<<1
    #define rs ls | 1
    #define mid ((ll+rr)>>1)
    #define pii pair<int,int>
    #define MP make_pair
    
    typedef long long LL;
    const long long INF = 1e18;
    const double Pi = acos(-1.0);
    const int N = 1e2+10, M = 1e2+11, mod = 1e9+7, inf = 0x3fffffff;
    
    int a[N][N],x[N],free_x[N];
    int Gauss(int equ,int var)
    {
        int i,j,k;
        int max_r;
        int col;
        int ta,tb;
        int LCM;
        int temp;
        int free_index;
        int num=0;
        for(int i=0;i<=var;i++)
        {
            x[i]=0;
            free_x[i]=0;
        }
        col=0;
        for(k = 0;k < equ && col < var;k++,col++)
        {
            max_r=k;
            for(i=k+1;i<equ;i++)
            {
                if(abs(a[i][col])>abs(a[max_r][col])) max_r=i;
            }
            if(max_r!=k)
            {
                for(j=k;j<var+1;j++) swap(a[k][j],a[max_r][j]);
            }
            if(a[k][col]==0)
            {
                k--;
                free_x[num++]=col;
                continue;
            }
            for(i=k+1;i<equ;i++)
            {
                if(a[i][col]!=0)
                {
                    for(j=col;j<var+1;j++)
                    {
                        a[i][j] ^= a[k][j];
                    }
                }
            }
        }
        for (i = k; i < equ; i++)
        {
            if (a[i][col] != 0) return -1;
        }
        int stat=1<<(var-k);
        int res=inf;
        for(i=0;i<stat;i++)
        {
            int cnt=0;
            int index=i;
            for(j=0;j<var-k;j++)
            {
                x[free_x[j]]=(index&1);
                if(x[free_x[j]]) cnt++;
                index>>=1;
            }
            for(j=k-1;j>=0;j--)
            {
                int tmp=a[j][var];
                for(int l=j+1;l<var;l++)
                  if(a[j][l]) tmp^=x[l];
                x[j]=tmp;
                if(x[j])cnt++;
            }
            if(cnt<res)res=cnt;
        }
        return res;
    }
    void init() {
            memset(a,0,sizeof(a));
            for(int i = 0; i < 20; ++i) a[i][i] = 1;
            for(int i = 0; i < 20; ++i) {if(i >= 1)a[i][i-1] = 1; if(i < 19) a[i][i+1] = 1;}
    }
    int main() {
            init();
            for(int i = 0; i < 20; ++i) scanf("%d",&a[i][20]);
            printf("%d
    ",Gauss(20,20));
            return 0;
    }
  • 相关阅读:
    舍不得花钱的心理分析
    DLL编程的导入导出,__declspec(dllimport),__declspec(dllexport)
    浅谈C/C++内存泄漏及其检测工具
    C++多线程编程简单实例
    linux镜像源设置
    Linux基础教程 linux无密码ssh登录设置
    兄弟连教育分享:用CSS实现鼠标悬停提示的方法
    PHP基础教程 PHP的页面缓冲处理机制
    Linux基础教程 linux下cat 命令使用详解
    PHP基础教程 php 网络上关于设计模式一些总结
  • 原文地址:https://www.cnblogs.com/zxhl/p/5876459.html
Copyright © 2011-2022 走看看