zoukankan      html  css  js  c++  java
  • SPOJ

    Triple Sums

    You're given a sequence s of N distinct integers.
    Consider all the possible sums of three integers from the sequence at three different indicies.
    For each obtainable sum output the number of different triples of indicies that generate it.

    Constraints:

    N <= 40000, |si| <= 20000

    Input

    The first line of input contains a single integer N.
    Each of the next N lines contain an element of s.

    Output

    Print the solution for each possible sum in the following format:
    sum_value : number_of_triples

    Smaller sum values should be printed first.

    Example

    Input:

    5
    -1
    2
    3
    0
    5
    Output:
    1 : 1
    2 : 1
    4 : 2
    5 : 1
    6 : 1
    7 : 2
    8 : 1
    10 : 1

    Explanation:
    4 can be obtained using triples ( 0, 1, 2 ) and ( 0, 3, 4 ).
    7 can be obtained using triples ( 0, 2, 4 ) and ( 1, 3, 4 ).

    Note: a triple is considered the same as any of its permutations.

    题意:

      给你n个数,问你任选三个不同序号的数和为x的方案数有多少

    题解:

      FFT;

      容斥原理要学好

      

    #include<bits/stdc++.h>
    using namespace std;
    #pragma comment(linker, "/STACK:102400000,102400000")
    #define ls i<<1
    #define rs ls | 1
    #define mid ((ll+rr)>>1)
    #define pii pair<int,int>
    #define MP make_pair
    typedef long long LL;
    const long long INF = 1e18+1LL;
    const double pi = acos(-1.0);
    const int N = 5e5+10, M = 1e3+20,inf = 2e9,mod = 1e9+7;
    
    
    struct Complex {
        double r , i ;
        Complex () {}
        Complex ( double r , double i ) : r ( r ) , i ( i ) {}
        Complex operator + ( const Complex& t ) const {
            return Complex ( r + t.r , i + t.i ) ;
        }
        Complex operator - ( const Complex& t ) const {
            return Complex ( r - t.r , i - t.i ) ;
        }
        Complex operator * ( const Complex& t ) const {
            return Complex ( r * t.r - i * t.i , r * t.i + i * t.r ) ;
        }
    } ;
    
    void FFT ( Complex y[] , int n , int rev ) {
        for ( int i = 1 , j , t , k ; i < n ; ++ i ) {
            for ( j = 0 , t = i , k = n >> 1 ; k ; k >>= 1 , t >>= 1 ) j = j << 1 | t & 1 ;
            if ( i < j ) swap ( y[i] , y[j] ) ;
        }
        for ( int s = 2 , ds = 1 ; s <= n ; ds = s , s <<= 1 ) {
            Complex wn = Complex ( cos ( rev * 2 * pi / s ) , sin ( rev * 2 * pi / s ) ) , w ( 1 , 0 ) , t ;
            for ( int k = 0 ; k < ds ; ++ k , w = w * wn ) {
                for ( int i = k ; i < n ; i += s ) {
                    y[i + ds] = y[i] - ( t = w * y[i + ds] ) ;
                    y[i] = y[i] + t ;
                }
            }
        }
        if ( rev == -1 ) for ( int i = 0 ; i < n ; ++ i ) y[i].r /= n ;
    }
    
    int num[N],n,x,now[N];
    Complex s[N*8],t[N*8],tt[N];
    int main() {
        scanf("%d",&n);
        for(int i = 1; i <= n; ++i) {
            scanf("%d",&x);
            num[x + 20000]++;
        }
        int n1;
        for(int i = 1; i <= 20000*6; i<<=1,n1=i);
    
        for(int i = 0; i <= 20000*2; ++i) now[i+i] += num[i];
        for(int i = 0; i <= 20000*4; ++i) s[i] = Complex(now[i],0);
        for(int i = 20000*4+1; i < n1; ++i) s[i] = Complex(0,0);
    
        for(int i = 0; i <= 2*20000; ++i) t[i] = Complex(num[i],0);
        for(int i = 2*20000+1; i < n1; ++i) t[i] = Complex(0,0);
        for(int i = 0; i < n1; ++i) tt[i] = t[i];
        FFT(s,n1,1),FFT(t,n1,1);FFT(tt,n1,1);
        for(int i = 0; i < n1; ++i) t[i] = t[i]*t[i]*t[i];
        for(int i = 0; i < n1; ++i) s[i] = s[i]*tt[i];
        FFT(s,n1,-1),FFT(t,n1,-1);
        int cnt = 0;
        for(int i = 0; i <= 6*20000; ++i) {
            int x = ((int)(t[i].r + 0.5)) - 3*((int)(s[i].r+0.5));
            if(i%3==0) x += 2*num[i/3];
            x/=6;
            if(x) {
                printf("%d : %d
    ",i - 3*20000,x);
            }
        }
        return 0;
    }
  • 相关阅读:
    【springboot】 springboot整合quartz实现定时任务
    Map集合的四种遍历方式
    WCF自引用和循环引用导致的序列化问题
    c#反射
    小助手配置文件列表页
    WPF数据绑定(ItemTemplate和DataTemplate)
    TankMapData
    手机qq协议做的第三方qq软件
    WPF MVVM模式学习
    小助手(应用盒子之我的实现思路及示例程序)
  • 原文地址:https://www.cnblogs.com/zxhl/p/7102937.html
Copyright © 2011-2022 走看看