zoukankan      html  css  js  c++  java
  • SPOJ

    Triple Sums

    You're given a sequence s of N distinct integers.
    Consider all the possible sums of three integers from the sequence at three different indicies.
    For each obtainable sum output the number of different triples of indicies that generate it.

    Constraints:

    N <= 40000, |si| <= 20000

    Input

    The first line of input contains a single integer N.
    Each of the next N lines contain an element of s.

    Output

    Print the solution for each possible sum in the following format:
    sum_value : number_of_triples

    Smaller sum values should be printed first.

    Example

    Input:

    5
    -1
    2
    3
    0
    5
    Output:
    1 : 1
    2 : 1
    4 : 2
    5 : 1
    6 : 1
    7 : 2
    8 : 1
    10 : 1

    Explanation:
    4 can be obtained using triples ( 0, 1, 2 ) and ( 0, 3, 4 ).
    7 can be obtained using triples ( 0, 2, 4 ) and ( 1, 3, 4 ).

    Note: a triple is considered the same as any of its permutations.

    题意:

      给你n个数,问你任选三个不同序号的数和为x的方案数有多少

    题解:

      FFT;

      容斥原理要学好

      

    #include<bits/stdc++.h>
    using namespace std;
    #pragma comment(linker, "/STACK:102400000,102400000")
    #define ls i<<1
    #define rs ls | 1
    #define mid ((ll+rr)>>1)
    #define pii pair<int,int>
    #define MP make_pair
    typedef long long LL;
    const long long INF = 1e18+1LL;
    const double pi = acos(-1.0);
    const int N = 5e5+10, M = 1e3+20,inf = 2e9,mod = 1e9+7;
    
    
    struct Complex {
        double r , i ;
        Complex () {}
        Complex ( double r , double i ) : r ( r ) , i ( i ) {}
        Complex operator + ( const Complex& t ) const {
            return Complex ( r + t.r , i + t.i ) ;
        }
        Complex operator - ( const Complex& t ) const {
            return Complex ( r - t.r , i - t.i ) ;
        }
        Complex operator * ( const Complex& t ) const {
            return Complex ( r * t.r - i * t.i , r * t.i + i * t.r ) ;
        }
    } ;
    
    void FFT ( Complex y[] , int n , int rev ) {
        for ( int i = 1 , j , t , k ; i < n ; ++ i ) {
            for ( j = 0 , t = i , k = n >> 1 ; k ; k >>= 1 , t >>= 1 ) j = j << 1 | t & 1 ;
            if ( i < j ) swap ( y[i] , y[j] ) ;
        }
        for ( int s = 2 , ds = 1 ; s <= n ; ds = s , s <<= 1 ) {
            Complex wn = Complex ( cos ( rev * 2 * pi / s ) , sin ( rev * 2 * pi / s ) ) , w ( 1 , 0 ) , t ;
            for ( int k = 0 ; k < ds ; ++ k , w = w * wn ) {
                for ( int i = k ; i < n ; i += s ) {
                    y[i + ds] = y[i] - ( t = w * y[i + ds] ) ;
                    y[i] = y[i] + t ;
                }
            }
        }
        if ( rev == -1 ) for ( int i = 0 ; i < n ; ++ i ) y[i].r /= n ;
    }
    
    int num[N],n,x,now[N];
    Complex s[N*8],t[N*8],tt[N];
    int main() {
        scanf("%d",&n);
        for(int i = 1; i <= n; ++i) {
            scanf("%d",&x);
            num[x + 20000]++;
        }
        int n1;
        for(int i = 1; i <= 20000*6; i<<=1,n1=i);
    
        for(int i = 0; i <= 20000*2; ++i) now[i+i] += num[i];
        for(int i = 0; i <= 20000*4; ++i) s[i] = Complex(now[i],0);
        for(int i = 20000*4+1; i < n1; ++i) s[i] = Complex(0,0);
    
        for(int i = 0; i <= 2*20000; ++i) t[i] = Complex(num[i],0);
        for(int i = 2*20000+1; i < n1; ++i) t[i] = Complex(0,0);
        for(int i = 0; i < n1; ++i) tt[i] = t[i];
        FFT(s,n1,1),FFT(t,n1,1);FFT(tt,n1,1);
        for(int i = 0; i < n1; ++i) t[i] = t[i]*t[i]*t[i];
        for(int i = 0; i < n1; ++i) s[i] = s[i]*tt[i];
        FFT(s,n1,-1),FFT(t,n1,-1);
        int cnt = 0;
        for(int i = 0; i <= 6*20000; ++i) {
            int x = ((int)(t[i].r + 0.5)) - 3*((int)(s[i].r+0.5));
            if(i%3==0) x += 2*num[i/3];
            x/=6;
            if(x) {
                printf("%d : %d
    ",i - 3*20000,x);
            }
        }
        return 0;
    }
  • 相关阅读:
    mysql表结构同步
    关于Java8中lambda约简函数reduce的一个计算问题
    激烈的歌曲有助于编程
    今天刷了数据解构与算法这门课 感觉略有收获
    我有一个好朋友 他的名字叫刘洋 他的ID是北极的大企鹅 他的技术不错 他渴望成为架构师 猎头们路过可以去他的博客看看
    缓存雪崩,缓存击穿,缓存穿透
    celery
    Redis
    django 缓存的使用
    base64 加密
  • 原文地址:https://www.cnblogs.com/zxhl/p/7102937.html
Copyright © 2011-2022 走看看