zoukankan      html  css  js  c++  java
  • SPOJ

    Triple Sums

    You're given a sequence s of N distinct integers.
    Consider all the possible sums of three integers from the sequence at three different indicies.
    For each obtainable sum output the number of different triples of indicies that generate it.

    Constraints:

    N <= 40000, |si| <= 20000

    Input

    The first line of input contains a single integer N.
    Each of the next N lines contain an element of s.

    Output

    Print the solution for each possible sum in the following format:
    sum_value : number_of_triples

    Smaller sum values should be printed first.

    Example

    Input:

    5
    -1
    2
    3
    0
    5
    Output:
    1 : 1
    2 : 1
    4 : 2
    5 : 1
    6 : 1
    7 : 2
    8 : 1
    10 : 1

    Explanation:
    4 can be obtained using triples ( 0, 1, 2 ) and ( 0, 3, 4 ).
    7 can be obtained using triples ( 0, 2, 4 ) and ( 1, 3, 4 ).

    Note: a triple is considered the same as any of its permutations.

    题意:

      给你n个数,问你任选三个不同序号的数和为x的方案数有多少

    题解:

      FFT;

      容斥原理要学好

      

    #include<bits/stdc++.h>
    using namespace std;
    #pragma comment(linker, "/STACK:102400000,102400000")
    #define ls i<<1
    #define rs ls | 1
    #define mid ((ll+rr)>>1)
    #define pii pair<int,int>
    #define MP make_pair
    typedef long long LL;
    const long long INF = 1e18+1LL;
    const double pi = acos(-1.0);
    const int N = 5e5+10, M = 1e3+20,inf = 2e9,mod = 1e9+7;
    
    
    struct Complex {
        double r , i ;
        Complex () {}
        Complex ( double r , double i ) : r ( r ) , i ( i ) {}
        Complex operator + ( const Complex& t ) const {
            return Complex ( r + t.r , i + t.i ) ;
        }
        Complex operator - ( const Complex& t ) const {
            return Complex ( r - t.r , i - t.i ) ;
        }
        Complex operator * ( const Complex& t ) const {
            return Complex ( r * t.r - i * t.i , r * t.i + i * t.r ) ;
        }
    } ;
    
    void FFT ( Complex y[] , int n , int rev ) {
        for ( int i = 1 , j , t , k ; i < n ; ++ i ) {
            for ( j = 0 , t = i , k = n >> 1 ; k ; k >>= 1 , t >>= 1 ) j = j << 1 | t & 1 ;
            if ( i < j ) swap ( y[i] , y[j] ) ;
        }
        for ( int s = 2 , ds = 1 ; s <= n ; ds = s , s <<= 1 ) {
            Complex wn = Complex ( cos ( rev * 2 * pi / s ) , sin ( rev * 2 * pi / s ) ) , w ( 1 , 0 ) , t ;
            for ( int k = 0 ; k < ds ; ++ k , w = w * wn ) {
                for ( int i = k ; i < n ; i += s ) {
                    y[i + ds] = y[i] - ( t = w * y[i + ds] ) ;
                    y[i] = y[i] + t ;
                }
            }
        }
        if ( rev == -1 ) for ( int i = 0 ; i < n ; ++ i ) y[i].r /= n ;
    }
    
    int num[N],n,x,now[N];
    Complex s[N*8],t[N*8],tt[N];
    int main() {
        scanf("%d",&n);
        for(int i = 1; i <= n; ++i) {
            scanf("%d",&x);
            num[x + 20000]++;
        }
        int n1;
        for(int i = 1; i <= 20000*6; i<<=1,n1=i);
    
        for(int i = 0; i <= 20000*2; ++i) now[i+i] += num[i];
        for(int i = 0; i <= 20000*4; ++i) s[i] = Complex(now[i],0);
        for(int i = 20000*4+1; i < n1; ++i) s[i] = Complex(0,0);
    
        for(int i = 0; i <= 2*20000; ++i) t[i] = Complex(num[i],0);
        for(int i = 2*20000+1; i < n1; ++i) t[i] = Complex(0,0);
        for(int i = 0; i < n1; ++i) tt[i] = t[i];
        FFT(s,n1,1),FFT(t,n1,1);FFT(tt,n1,1);
        for(int i = 0; i < n1; ++i) t[i] = t[i]*t[i]*t[i];
        for(int i = 0; i < n1; ++i) s[i] = s[i]*tt[i];
        FFT(s,n1,-1),FFT(t,n1,-1);
        int cnt = 0;
        for(int i = 0; i <= 6*20000; ++i) {
            int x = ((int)(t[i].r + 0.5)) - 3*((int)(s[i].r+0.5));
            if(i%3==0) x += 2*num[i/3];
            x/=6;
            if(x) {
                printf("%d : %d
    ",i - 3*20000,x);
            }
        }
        return 0;
    }
  • 相关阅读:
    第十四届中北大学ACM程序设计竞赛 J.ZBT的游戏
    洛谷P1248 加工生产调度
    洛谷P1736 创意吃鱼法
    洛谷P3372 【模板】线段树 1
    洛谷P1330 封锁阳光大学
    洛谷P3275 [SCOI2011]糖果
    Android 开发60条技术经验总结(转)
    Genymotion常见问题汇总(转)
    页面跳转与数据传递
    网络编程(二)
  • 原文地址:https://www.cnblogs.com/zxhl/p/7102937.html
Copyright © 2011-2022 走看看