题目链接:传送门
题解:
设定dp[i][j]在深度为i下,使用j个节点的方案数
显然的转移方程组就是 dp[h][n] = dp[h-1][i] * dp[h-1][n-i-1] + 2*dp[h-1][i]*dp[h-2][n-i-1];
卷积形式
利用FFT加速求解dp[h]
下面是AC代码
#include<bits/stdc++.h> using namespace std; #pragma comment(linker, "/STACK:102400000,102400000") #define ls i<<1 #define rs ls | 1 #define mid ((ll+rr)>>1) #define pii pair<int,int> #define MP make_pair typedef long long LL; typedef unsigned long long ULL; const long long INF = 1e18+1LL; const double pi = acos(-1.0); const int N = 7e5+10, M = 1e3+20,inf = 2e9; const long long P=786433LL,mod = 786433LL; const LL G=10LL; LL mul(LL x,LL y){ return (x*y-(LL)(x/(long double)P*y+1e-3)*P+P)%P; } LL qpow(LL x,LL k){ LL ret=1; while(k){ if(k&1) ret=mul(ret,x); k>>=1; x=mul(x,x); } return ret; } LL wn[50]; void getwn(){ for(int i=1; i<=40; ++i){ int t=1<<i; wn[i]=qpow(G,(P-1)/t); } } int len; void NTT(LL y[],int op){ for(int i=1,j=len>>1,k; i<len-1; ++i){ if(i<j) swap(y[i],y[j]); k=len>>1; while(j>=k){ j-=k; k>>=1; } if(j<k) j+=k; } int id=0; for(int h=2; h<=len; h<<=1) { ++id; for(int i=0; i<len; i+=h){ LL w=1; for(int j=i; j<i+(h>>1); ++j){ LL u=y[j],t=mul(y[j+h/2],w); y[j]=u+t; if(y[j]>=P) y[j]-=P; y[j+h/2]=u-t+P; if(y[j+h/2]>=P) y[j+h/2]-=P; w=mul(w,wn[id]); } } } if(op==-1){ for(int i=1; i<len/2; ++i) swap(y[i],y[len-i]); LL inv=qpow(len,P-2); for(int i=0; i<len; ++i) y[i]=mul(y[i],inv); } } LL dp[20][N],tmp[N]; int n,h; int main() { freopen("avl.in", "r", stdin); freopen("avl.out", "w", stdout); getwn(); scanf("%d%d",&n,&h); dp[0][1] = 1,dp[1][2] = 2,dp[1][3] = 1; len = 1; for(int i = 2; i <= h; ++i) { len = (1<<(i+1)); NTT(dp[i-2],1);NTT(dp[i-1],1); for(int j = 0; j < len; ++j) tmp[j] = (dp[i-1][j] * dp[i-2][j])%mod; NTT(tmp,-1); for(int j = 1; j < len; ++j) dp[i][j] = 2LL*tmp[j-1] % mod; for(int j = 0; j < len; ++j) tmp[j] = (dp[i-1][j] * dp[i-1][j])%mod; NTT(tmp,-1); for(int j = 1; j < len; ++j) dp[i][j] += tmp[j-1], dp[i][j] %= mod; NTT(dp[i-2],-1); NTT(dp[i-1],-1); } printf("%lld ",dp[h][n]); return 0; }