zoukankan      html  css  js  c++  java
  • HDU 6086 Rikka with String AC自动机 + DP

    Rikka with String

    Problem Description
    As we know, Rikka is poor at math. Yuta is worrying about this situation, so he gives Rikka some math tasks to practice. There is one of them:

    Yuta has n 01 strings si, and he wants to know the number of 01 antisymmetric strings of length 2L which contain all given strings si as continuous substrings.

    01 string s is antisymmetric if and only if s[i]s[|s|i+1] for all i[1,|s|].

    It is too difficult for Rikka. Can you help her?

    In the second sample, the strings which satisfy all the restrictions are 000111,001011,011001,100110.
     
    Input
    The first line contains a number t(1t5), the number of the testcases. 

    For each testcase, the first line contains two numbers n,L(1n6,1L100)

    Then n lines follow, each line contains a 01 string si(1|si|20).
     
    Output
    For each testcase, print a single line with a single number -- the answer modulo 998244353.
     
    Sample Input
    2 2 2 011 001 2 3 011 001
     
    Sample Output
    1 4
     
     
    题解:
      要是能在比赛中A掉就爽了
      和题解做法一样
      
    #include<bits/stdc++.h>
    using namespace std;
    #pragma comment(linker, "/STACK:102400000,102400000")
    #define ls i<<1
    #define rs ls | 1
    #define mid ((ll+rr)>>1)
    #define pii pair<int,int>
    #define MP make_pair
    typedef long long LL;
    const long long INF = 1e18+1LL;
    const double pi = acos(-1.0);
    const int N = 1e4+10, M = 1e3+20,inf = 2e9;
    
    const LL mod = 998244353LL;
    
    int dp[2][121][121][80],sum[2][N];
    int nex[2][N][2],cnt0,cnt1,head1,tail1,head0,tail0,q[2][N],fail[2][N];
    
    void insert(char *s,int p) {
        int now = 1,len = strlen(s);
        for(int i = 0; i < len; ++i) {
            int index = s[i] - '0';
            if(!nex[0][now][index])
                nex[0][now][index] = ++cnt0;
            sum[0][nex[0][now][index]] |= sum[0][now];
            now = nex[0][now][index];
            //cout<<now<<" "<<index<<endl;
        }
        sum[0][now] |= (1<<p);
    
    
        now = 1;
        for(int i = len-1; i >= 0; --i) {
            int index = s[i] - '0';
            if(!nex[1][now][index])
                nex[1][now][index] = ++cnt1;
            sum[1][nex[1][now][index]] |= sum[1][now];
            now = nex[1][now][index];
            //cout<<now<<" "<<index<<endl;
        }
        sum[1][now] |= (1<<p);
    }
    
    void build_fail() {
        head0 = 0, tail0 = 0;head1 = 0, tail1 = 0;
        for(int i = 0; i < 2; ++i)
            nex[0][0][i] = 1,nex[1][0][i] = 1;
    
        fail[0][1] = 0,fail[1][1] = 0;
        q[0][tail0++] = 1;q[1][tail1++] = 1;
        while(head0 != tail0) {
            int now = q[0][head0++];
            sum[0][now] |= sum[0][fail[0][now]];
            for(int i = 0; i < 2; ++i) {
                int p = fail[0][now];
                if(!nex[0][now][i]) {
                    nex[0][now][i] = nex[0][p][i];continue;
                }
                fail[0][nex[0][now][i]] = nex[0][p][i];
                q[0][tail0++] = nex[0][now][i];
            }
        }
        while(head1 != tail1) {
            int now = q[1][head1++];
            sum[1][now] |= sum[1][fail[1][now]];
            for(int i = 0; i < 2; ++i) {
                int p = fail[1][now];
                if(!nex[1][now][i]) {
                    nex[1][now][i] = nex[1][p][i];continue;
                }
                fail[1][nex[1][now][i]] = nex[1][p][i];
                q[1][tail1++] = nex[1][now][i];
            }
        }
    }
    int len[N],mx,n,L;
    char a[N];
    int dfs() {
        int now = 1;
        int ret = 0;
        for(int i = 1; i <= 2*mx; ++i) {
            now = nex[0][now][len[i]];
            ret |= sum[0][now];
        }
        return ret;
    }
    int ma(int p) {
        int now = 1;
        if(p)
            for(int i = mx; i >= 1; --i)
                now = nex[1][now][len[i]];
        else
            for(int i = mx+1; i <= 2*mx; ++i)
                now = nex[0][now][len[i]];
        return now;
    }
    void init() {
        memset(dp,0,sizeof(dp));
        memset(nex,0,sizeof(nex));
        cnt0 = 1;mx = -1;cnt1 = 1;
        memset(fail,0,sizeof(fail));
        memset(sum,0,sizeof(sum));
    }
    int main() {
        int T;
        scanf("%d",&T);
        while(T--) {
            scanf("%d%d",&n,&L);
            init();
            for(int i = 1; i <= n; ++i) {
                scanf("%s",a);
                insert(a,i-1);
                mx = max(mx,(int)strlen(a));
            }
            int ff = 0;
            mx-=1;
            build_fail();
            for(int i = 0; i < (1<<mx); ++i) {
                for(int j = 1; j <= mx; ++j) len[j] = ((i>>(j-1))&1);
                for(int j = mx+1; j <= 2*mx; ++j) len[j] = 1^(len[2*mx - j + 1]);
                int now = dfs();
                int z = ma(1),f = ma(0);
                dp[ff][z][f][now] += 1;
                 dp[ff][z][f][now] %= mod;
               // cout<<i<<" "<<now<<" "<<z<<" "<<f<<endl;
            }
    
            for(int i = mx; i < L; i++) {
                memset(dp[ff^1],0,sizeof(dp[ff^1]));
                for(int j = 0; j < tail1; ++j) {
                    for(int k = 0; k < tail0; ++k) {
                        for(int h = 0; h < (1<<n); ++h) {
    
                            if(!dp[ff][q[1][j]][q[0][k]][h]) continue;
    
                            int p = nex[1][q[1][j]][0],np = nex[0][q[0][k]][1];
                            int tmp = (h|sum[1][p]);
                            tmp |= sum[0][np];
    
                            dp[ff^1][p][np][tmp] += dp[ff][q[1][j]][q[0][k]][h];
                             dp[ff^1][p][np][tmp] %= mod;
    
                             p = nex[1][q[1][j]][1],np = nex[0][q[0][k]][0];
                            tmp = (h|sum[1][p]);
                            tmp |= sum[0][np];
    
                              dp[ff^1][p][np][tmp] += dp[ff][q[1][j]][q[0][k]][h];
                             dp[ff^1][p][np][tmp] %= mod;
    
                        }
                    }
                }
                ff^=1;
            }
            LL ans = 0;
            for(int i = 0; i < tail1; ++i)
                for(int j = 0; j < tail0; ++j)
                    ans = ( ans + dp[ff][q[1][i]][q[0][j]][(1<<n)-1]) % mod;
            printf("%lld
    ",ans);
        }
        return 0;
    }
  • 相关阅读:
    SQL 在数据库中查找包含指定关键字的存储过程或函数
    根据名称查找存储过程或函数
    根据最后修改时间查找存储过程或函数
    SQL 数据过度事务模板
    Feeling something wrong
    发布一个倒计时软件(C# 开源)
    SpringBoot中的配置文件信息加密
    springboot中mysql连接配置
    React学习2_运行项目
    React学习0_文章目录
  • 原文地址:https://www.cnblogs.com/zxhl/p/7308810.html
Copyright © 2011-2022 走看看